多胺
多胺(英語:polyamines),又稱多元胺,是一種具有兩個或多個主要胺基(-NH2)的有機化合物。
這類的化合物包含一些合成物質,可以做為化學工業中重要的原料,像是乙二胺(H
2N–CH
2–CH
2–NH
2)、1,3-二氨基丙烷(H
2N–(CH
2)
3–NH
2)、六亞甲基二胺(H
2N–(CH
2)
6–NH
2)。它還包括許多物質可以在真核生物、原核生物中發揮重要的作用,例如腐胺(H
2N–(CH
2)
4–NH
2)、屍胺(H
2N–(CH
2)
5–NH
2)、亞精胺(H
2N–(CH
2)
4–NH–(CH
2)
3–NH
2)、精胺(H
2N–(CH
2)
3–NH–(CH
2)
4–NH–(CH
2)
3–NH
2)。
截至2004年,沒有發現任何的偕二胺在同一個碳原子上具有兩個或多個–NH
2取代基團,但是取代的衍生物則是已知的,例如四乙基甲二胺((C
2H
5)
2N–CH
2–N(C
2H
5)
2)。[1]
哌嗪是環狀多胺的其中一個例子,聚乙烯亞胺則是基於氮丙環單體的聚合物。
功能
生物性
儘管已知多胺是在高度調節途徑的細胞中被合成的,但他們的實際功能卻還沒完全解明。作為陽離子,他們和DNA結合,在結構上它們被發現與陽離子化合物在規則的間隔之間(不同於Mg2+
、Ca2+
,它們是點電荷)。它們也被發現可以作為轉譯過程中核糖體移碼的啟動子。[2]
如果細胞中多胺合成受到抑制,導致細胞生長停止或是嚴重延遲,則外源性多胺可以恢復這些細胞的生長。大多數的真核細胞的細胞膜上會有一個多胺轉運系統,便於外源性多胺進入細胞內。這個系統在高速增值的細胞中有非常高的活性,並且是目前正在開發的一些化療藥物的目標。[3]
多胺也是許多離子通道的重要調節劑,包含NMDA受體、AMPA受體。它們阻止內向整流鉀離子通道,讓通道的電流內向整流,使細胞能量(即穿過細胞膜的K+
離子梯度)守恆。此外多胺也會參與啟動大腸桿菌素E7操縱子和SOS反應中下調的蛋白質,這對大腸桿菌素E7的攝取是必須的,並對處於嚴峻生長條件中的大腸桿菌提供優勢。[4]
多胺在植物衰老中參與調節,所以被認為是一種植物激素。[5]另外,它們會直接參與細胞死亡的調節[6],也可以增強血腦屏障的通透性。[7]
螯合劑
多胺是重要的螯合劑。像是四甲基乙二胺(TMED)可以在有機溶劑中溶解金屬離子,二乙烯三胺和三乙烯四胺(TETA)和更強大的螯合劑可以分別形成三齒和四齒的複合物,大環多胺可以添加腔選擇性的螯合效應,在血紅蛋白中的血紅素基團是一個大環多胺配體的重要範例。脂肪族線性多胺的芳香族類似物,像是聯吡啶、鄰二氮菲、三聯吡啶也是有用的螯合劑。
質子化的多胺,尤其是大環多胺,可以綁定陰離子。透過改變腔的形狀、大小,質子化的多胺可以變為更特殊的陰離子受體。
線性多胺合成
腐胺
腐胺在生物學上可以透過兩種不同的途徑合成,但起始物都是精氨酸。
屍胺
亞精胺和精胺
腐胺透過亞精胺合成酶反應出亞精胺,亞精胺再透過精胺合成酶反應出精胺。
多胺類似物
多胺作為在細胞生長中的一個關鍵角色,導致了一些多胺代謝干擾劑的開發,這些藥劑被用於治療癌症。多胺類似物在細胞內上調p53(腫瘤抑制蛋白)來限制細胞增殖和細胞凋亡。[9]另外它也降低了陽性乳腺癌中的雌激素受體α的表達。[10]
參考資料
- ^ Lawrence, Stephen A. Amines: synthesis, properties and applications. Cambridge University Press. 2004: 64 [2015-01-19]. ISBN 978-0-521-78284-5. (原始内容存档于2016-05-07).
- ^ Rato C, Amirova S.R, Bates D.G, Stansfield I, Wallace H.M. Translational recoding as a feedback controller: systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift. Nucleic Acid Res. June 2011, 39 (11): 4587–4597. PMC 3113565 . PMID 21303766. doi:10.1093/nar/gkq1349.
- ^ Wang C; Delcros JG; Cannon L; et al. Defining the molecular requirements for the selective delivery of polyamine conjugates into cells containing active polyamine transporters. J. Med. Chem. November 2003, 46 (24): 5129–38. PMID 14613316. doi:10.1021/jm030223a. 已忽略未知参数
|author-separator=
(帮助) - ^ Yi-Hsuan Pan, Chen-Chung Liao. The critical roles of polyamines regulating ColE7 production and restricting ColE7 uptake of the colicin-producing Escherichia coli. JBC. May 2006, 281 (19): 13083–13091 [2015-01-19]. PMID 16549429. doi:10.1074/jbc.M511365200. (原始内容存档于2018-11-01).
- ^ Pandey S, Ranade SA, Nagar PK, Kumar N. Role of polyamines and ethylene as modulators of plant senescence. J. Biosci. September 2000, 25 (3): 291–9. PMID 11022232. doi:10.1007/BF02703938.[永久失效連結]
- ^ Moschou, PN; Roubelakis-Angelakis, KA. Polyamines and programmed cell death.. Journal of Experimental Botany. Nov 11, 2013. PMID 24218329. doi:10.1093/jxb/ert373.
- ^ Zhang L, Lee HK, Pruess TH, White HS, Bulaj G. Synthesis and applications of polyamine amino acid residues: improving the bioactivity of an analgesic neuropeptide, neurotensin. J. Med. Chem. March 2009, 52 (6): 1514–7 [2015-01-19]. PMC 2694617 . PMID 19236044. doi:10.1021/jm801481y. (原始内容存档于2019-11-29).
- ^ Srivenugopal KS, Adiga PR. Enzymic conversion of agmatine to putrescine in Lathyrus sativus seedlings. Purification and properties of a multifunctional enzyme (putrescine synthase). 256 (18): 9532–41. September 1981. PMID 6895223.
- ^ Role of p53/p21(Waf1/Cip1) in the regulation of polyamine analogue-induced growth inhibition and cell death in human breast cancer cells. [21 November 2012]. (原始内容存档于2019-11-29).
- ^ Polyamine analogues down-regulate estrogen receptor alpha expression in human breast cancer cells. [21 November 2012]. (原始内容存档于2019-11-28).