拟约翰逊多面体
外观
在几何学中,拟约翰逊多面体是严格凸多面体,其面几乎都是正多边形,但其中有部分或全部的面不是正多边形但很接近正多边形。这种多面体也包含约翰逊多面体,即所有的面都是正多边形,而拟约翰逊多面体经常会在正多边形与非正多边形之间有物理构造上可以忽略的微小差异[1]。近似的精确值取决于这样一个多面体的面逼近正多边形的程度。
例子
名称 康威多面体表示法 |
图像 | 顶点布局 | 顶点 | 边 | 面 | F3 | F4 | F5 | F6 | F8 | F10 | F12 | 对称性 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
底面截角双三角锥 t4dP3 |
2 (5.5.5) 12 (4.5.5) |
14 | 21 | 9 | 3 | 6 | Dih3 order 12 | ||||||
截角三角化四面体 t6kT |
4 (5.5.5) 24 (5.5.6) |
28 | 42 | 16 | 12 | 4 | Td, [3,3] order 24 | ||||||
五边形六边形五角十二面七十四面体 | 12 (3.5.3.6) 24 (3.3.5.6) 24 (3.3.3.3.5) |
60 | 132 | 74 | 56 | 12 | 6 | Th, [3+,4] order 24 | |||||
倒角立方体 cC |
24 (4.6.6) 8 (6.6.6) |
32 | 48 | 18 | 6 | 12 | Oh, [4,3] order 48 | ||||||
-- | 12 (5.5.6) 6 (3.5.3.5) 12 (3.3.5.5) |
30 | 54 | 26 | 12 | 12 | 2 | D6h, [6,2] order 24 | |||||
-- | 6 (5.5.5) 9 (3.5.3.5) 12 (3.3.5.5) |
27 | 51 | 26 | 14 | 12 | D3h, [3,2] order 12 | ||||||
四阶十二面体 | 4 (5.5.5) 12 (3.5.3.5) 12 (3.3.5.5) |
28 | 54 | 28 | 16 | 12 | Td, [3,3] order 24 | ||||||
部分截半截角八面体 | 24 (3.4.3.9) 24 (3.9.9) |
38 | 84 | 48 | 24 | 6 | Oh, [4,3] | ||||||
倒角十二面体 cD |
60 (5.6.6) 20 (6.6.6) |
80 | 120 | 42 | 12 | 30 | Ih, [5,3] order 120 | ||||||
截半截角二十面体 atI |
60 (3.5.3.6) 30 (3.6.3.6) |
90 | 180 | 92 | 60 | 12 | 20 | Ih, [5,3] order 120 | |||||
截角截角二十面体 ttI |
120 (3.10.12) 60 (3.12.12) |
180 | 270 | 92 | 60 | 12 | 20 | Ih, [5,3] order 120 | |||||
扩展截角二十面体 etI |
60 (3.4.5.4) 120 (3.4.6.4) |
180 | 360 | 182 | 60 | 90 | 12 | 20 | Ih, [5,3] order 120 | ||||
扭棱截角二十面体 stI |
60 (3.3.3.3.5) 120 (3.3.3.3.6) |
180 | 450 | 272 | 240 | 12 | 20 | I, [5,3]+ order 60 |
共面拟约翰逊多面体
有些未能成为约翰逊多面体的候选多面体是因为其存在有两个以上共面的面,其也可以算是全部由正多边形组成的凸多面体,只是其凸为非严格凸。[2]这些多面体可被看做是凸的面且非常接近正多边形。
例如: 3.3...
4.4.4.4
3.4.6.4:
-
正六角台塔
(退化)
条件边正多边形凸多面体
若将约翰逊多面体的条件放宽成允许面两两共面(不允许连续三个面互相共面)则能够再列出有限个有此特性的立体。这类立体一共有78个
参见
参考文献
- ^ Kaplan, Craig S.; Hart, George W., Symmetrohedra: Polyhedra from Symmetric Placement of Regular Polygons, Bridges: Mathematical Connections in Art, Music and Science (PDF), 2001 [2014-05-01], (原始内容存档 (PDF)于2015-09-23).
- ^ Robert R Tupelo-Schneck. Convex regular-faced polyhedra with conditional edges.