跳转到内容

拟约翰逊多面体

本页使用了标题或全文手工转换
维基百科,自由的百科全书

这是本页的一个历史版本,由A2569875留言 | 贡献2023年1月31日 (二) 10:13 條件邊正多邊形凸多面體编辑。这可能和当前版本存在着巨大的差异。

几何学中,拟约翰逊多面体是严格凸多面体,其面几乎都是正多边形,但其中有部分或全部的面不是正多边形但很接近正多边形。这种多面体也包含约翰逊多面体,即所有的面都是正多边形,而拟约翰逊多面体经常会在正多边形与非正多边形之间有物理构造上可以忽略的微小差异[1]。近似的精确值取决于这样一个多面体的面逼近正多边形的程度。

例子

名称
康威多面体表示法
图像 顶点布局英语Vertex configuration 顶点 F3 F4 F5 F6 F8 F10 F12 对称性英语List of spherical symmetry groups
底面截角双三角锥
t4dP3
2 (5.5.5)
12 (4.5.5)
14 21 9 3 6 Dih3
order 12
截角三角化四面体
t6kT
4 (5.5.5)
24 (5.5.6)
28 42 16     12 4       Td, [3,3]
order 24
五边形六边形五角十二面七十四面体 12 (3.5.3.6)
24 (3.3.5.6)
24 (3.3.3.3.5)
60 132 74 56 12 6 Th, [3+,4]
order 24
倒角立方体
cC
24 (4.6.6)
8 (6.6.6)
32 48 18   6   12       Oh, [4,3]
order 48
-- 12 (5.5.6)
6 (3.5.3.5)
12 (3.3.5.5)
30 54 26 12   12 2       D6h, [6,2]
order 24
-- 6 (5.5.5)
9 (3.5.3.5)
12 (3.3.5.5)
27 51 26 14   12         D3h, [3,2]
order 12
四阶十二面体 4 (5.5.5)
12 (3.5.3.5)
12 (3.3.5.5)
28 54 28 16   12         Td, [3,3]
order 24
部分截半截角八面体 24 (3.4.3.9)
24 (3.9.9)
38 84 48 24 6           Oh, [4,3]
倒角十二面体
cD
60 (5.6.6)
20 (6.6.6)
80 120 42     12 30       Ih, [5,3]
order 120
截半截角二十面体
atI
60 (3.5.3.6)
30 (3.6.3.6)
90 180 92 60   12 20       Ih, [5,3]
order 120
截角截角二十面体
ttI
120 (3.10.12)
60 (3.12.12)
180 270 92 60         12 20 Ih, [5,3]
order 120
扩展截角二十面体
etI
60 (3.4.5.4)
120 (3.4.6.4)
180 360 182 60 90 12 20       Ih, [5,3]
order 120
扭棱截角二十面体
stI
60 (3.3.3.3.5)
120 (3.3.3.3.6)
180 450 272 240   12 20       I, [5,3]+
order 60

共面拟约翰逊多面体

有些未能成为约翰逊多面体的候选多面体是因为其存在有两个以上共面的面,其也可以算是全部由正多边形组成的凸多面体,只是其凸为非严格凸。[2]这些多面体可被看做是凸的面且非常接近正多边形。

例如: 3.3...

4.4.4.4

3.4.6.4:

条件边正多边形凸多面体

若将约翰逊多面体的条件放宽成允许面两两共面(不允许连续三个面互相共面)则能够再列出有限个有此特性的立体。这类立体一共有78个

参见

参考文献

  1. ^ Kaplan, Craig S.; Hart, George W., Symmetrohedra: Polyhedra from Symmetric Placement of Regular Polygons, Bridges: Mathematical Connections in Art, Music and Science (PDF), 2001 [2014-05-01], (原始内容存档 (PDF)于2015-09-23) .
  2. ^ Robert R Tupelo-Schneck. Convex regular-faced polyhedra with conditional edges.