伴隨叢
此條目目前正依照其他維基百科上的內容進行翻譯。 (2008年12月16日) |
在數學中,伴隨叢(adjoint bundle)是一個自然相配於任何主叢的向量叢。伴隨叢的纖維帶有李代數結構使得伴隨叢從未一個代數叢。伴隨叢在聯絡理論以及正規理論中具有重要的應用。
形式定義
Let G be a Lie group with Lie algebra , and let P be a principal G-bundle over a smooth manifold M. Let
be the adjoint representation of G. The adjoint bundle of P is the associated bundle
The adjoint bundle is also commonly denoted by . Explicitly, elements of the adjoint bundle are equivalence classes of pairs [p, x] for p ∈ P and x ∈ such that
for all g ∈ G. Since the structure group of the adjoint bundle consists of Lie algebra automorphisms, the fibers naturally carry a Lie algebra structure making the adjoint bundle into a bundle of Lie algebras over M.
性質
Differential forms on M with values in AdP are in one-to-one corresponding with horizontal, G-equivariant Lie algebra-valued forms on P. A prime example is the curvature of any connection on P which may be regarded as a 2-form on M with values in AdP.
The space of sections of the adjoint bundle is naturally an (infinite-dimensional) Lie algebra. It may be regarded as the Lie algebra of the infinite-dimensional Lie group of gauge transformations of P which can be thought of as sections of the bundle P ×Ψ G where Ψ is the action of G on itself by conjugation.
這是一篇關於數學的小作品。您可以透過編輯或修訂擴充其內容。 |
模板參量錯誤!(代碼34)
|