跳至內容

伴隨叢

維基百科,自由的百科全書

這是本頁的一個歷史版本,由刻意留言 | 貢獻2008年12月16日 (二) 18:30 建立内容为“{{subst:Translating/auto}} 在数学中,'''伴随丛'''({{lang|en|adjoint bundle}})是一个自然相配于任何主丛向量丛...”的新页面)編輯。這可能和目前版本存在著巨大的差異。

(差異) ←上一修訂 | 最新修訂 (差異) | 下一修訂→ (差異)

數學中,伴隨叢adjoint bundle)是一個自然相配於任何主叢向量叢。伴隨叢的纖維帶有李代數結構使得伴隨叢從未一個代數叢。伴隨叢在聯絡理論以及正規理論中具有重要的應用。

形式定義

Let G be a Lie group with Lie algebra , and let P be a principal G-bundle over a smooth manifold M. Let

be the adjoint representation of G. The adjoint bundle of P is the associated bundle

The adjoint bundle is also commonly denoted by . Explicitly, elements of the adjoint bundle are equivalence classes of pairs [p, x] for pP and x such that

for all gG. Since the structure group of the adjoint bundle consists of Lie algebra automorphisms, the fibers naturally carry a Lie algebra structure making the adjoint bundle into a bundle of Lie algebras over M.

性質

Differential forms on M with values in AdP are in one-to-one corresponding with horizontal, G-equivariant Lie algebra-valued forms on P. A prime example is the curvature of any connection on P which may be regarded as a 2-form on M with values in AdP.

The space of sections of the adjoint bundle is naturally an (infinite-dimensional) Lie algebra. It may be regarded as the Lie algebra of the infinite-dimensional Lie group of gauge transformations of P which can be thought of as sections of the bundle P ×Ψ G where Ψ is the action of G on itself by conjugation.