跳至內容

File:Window function (rectangular).png

頁面內容不支援其他語言。
這個檔案來自維基共享資源
維基百科,自由的百科全書

原始檔案 (2,500 × 1,123 像素,檔案大小:83 KB,MIME 類型:image/png


Transferred from en.wikipedia to Commons by Tiaguito.

摘要

描述 rectangular window and frequency response
日期
來源 自己的作品
作者 Bob K (original version), Olli Niemitalo
授權許可
(重用此檔案)
Public domain 我,此作品的版權所有人,釋出此作品至公共領域。此授權條款在全世界均適用。
這可能在某些國家不合法,如果是的話:
我授予任何人有權利使用此作品於任何用途,除受法律約束外,不受任何限制。
其他版本
File:Window function and frequency response - Rectangular.svg是本檔案的向量版本。 如果品質不低,就應該優先使用該檔案,而非PNG檔案。

File:Window function (rectangular).png → File:Window function and frequency response - Rectangular.svg

更多資訊請參閱Help:SVG/zh

其他語言
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  中文(臺灣)  +/−
新SVG圖片

Source code
InfoField
The script below generates these .png images:

This script has not been tested in MATLAB. See the individual file histories for the simpler MATLAB scripts that were the basis of this script.

Generation of svg files by minor modification of the script displayed visual artifacts and renderer incompatibilities that could not be easily fixed. The current script fixes the visual artifacts in the png file as a post-processing step. The script generates a semi-transparent grid by taking a weighted average of two images, one with the grid and one without.
N
 
本PNG 點陣圖使用Octave創作Olli Niemitalo

Matlab

function plotWindowLayer (w, N, gridded, wname, wspecifier)
 
  M=32;
  k=0:N-1;
  dr = 120;

  H = abs(fft([w zeros(1,(M-1)*N)]));
  H = fftshift(H);
  H = H/max(H);
  H = 20*log10(H);
  H = max(-dr,H);
 
  figure('Position',[1 1 1200 520])
  subplot(1,2,1)
  set(gca,'FontSize',28)
  area(k,w,'FaceColor', [0 1 1],'edgecolor', [1 1 0],'linewidth', 2)
  xlim([0 N-1])
  if (min(w) >= -0.01)
    ylim([0 1.05])
    set(gca,'YTick', [0 : 0.1 : 1])
    ylabel('amplitude','position',[-16 0.525 0])
  else
    ylim([-1 5])
    set(gca,'YTick', [-1 : 1 : 5])
    ylabel('amplitude','position',[-16 2 0])
  endif
  set(gca,'XTick', [0 : 1/8 : 1]*(N-1))
  set(gca,'XTickLabel',[' 0'; ' '; ' '; ' '; ' '; ' '; ' '; ' '; 'N-1'])
  grid(gridded)
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  xlabel('samples')
  if (strcmp (wspecifier, ""))
    title(cstrcat(wname,' window'))
  else
    title(cstrcat(wname,' window (', wspecifier, ')'))
  endif
  set(gca,'Position',[0.08 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])
  
  subplot(1,2,2)
  set(gca,'FontSize',28)
  h = stem(([1:M*N]-1-M*N/2)/M,H,'-');
  set(h,'BaseValue',-dr)
  ylim([-dr 6])
  set(gca,'YTick', [0 : -10 : -dr])
  set(findobj('Type','line'),'Marker','none','Color',[0 1 1])
  xlim([-M*N/2 M*N/2]/M)
  grid(gridded)
  set(findobj('Type','gridline'),'Color',[.871 .49 0])
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  ylabel('decibels')
  xlabel('bins')
  title('Frequency response')
  set(gca,'Position',[0.59 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])

endfunction

function plotWindow (w, wname, wspecifier = "", wfilespecifier = "")

  if (strcmp (wfilespecifier, ""))
    wfilespecifier = wspecifier;
  endif

  N = size(w)(2);
  B = N*sum(w.^2)/sum(w)^2   % noise bandwidth (bins), set N = 4096 to get an accurate estimate
  
  plotWindowLayer(w, N, "on", wname, wspecifier);  % "gridded" = "on"
  print temp1.png -dpng "-S2500,1165"
  close
  plotWindowLayer(w, N, "off", wname, wspecifier);  % "gridded" = "off"
  print temp2.png -dpng "-S2500,1165"
  close
% I'm not sure what's going on here, but it looks like the author might have been able
% to save himself some time by using set(gca,"Layer","top") and set(gca,"Layer","bottom").
  I = imread ("temp1.png");
  J = imread ("temp2.png");
  info = imfinfo ("temp1.png");
  w = info.Width;
  c = 1-(double(I(:,1:w/2,1))+2*double(J(:,1:w/2,1)))/(255*3);
  m = 1-(double(I(:,1:w/2,2))+2*double(J(:,1:w/2,2)))/(255*3);
  y = 1-(double(I(:,1:w/2,3))+2*double(J(:,1:w/2,3)))/(255*3);
  c = ((c != m) | (c != y)).*(c > 0).*(1-m-y);
  I(:,1:w/2,1) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  I(:,1:w/2,2) = 255*(1-c-m-y + 0*m + 0*y + 0.4*c);
  I(:,1:w/2,3) = 255*(1-c-m-y + 0*m + 0*y + 0.6*c);
  c = 1-(double(I(:,w/2+1:w,1))+2*double(J(:,w/2+1:w,1)))/(255*3);
  m = 1-(double(I(:,w/2+1:w,2))+2*double(J(:,w/2+1:w,2)))/(255*3);
  y = 1-(double(I(:,w/2+1:w,3))+2*double(J(:,w/2+1:w,3)))/(255*3);
  c = ((c != m) | (c != y)).*c;
  I(:,w/2+1:w,1) = 255*(1-c-m-y + 0*m + 0*y + 0.8710*c);
  I(:,w/2+1:w,2) = 255*(1-c-m-y + 0*m + 0*y + 0.49*c);
  I(:,w/2+1:w,3) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  if (strcmp (wfilespecifier, ""))
    imwrite (I, cstrcat('Window function and frequency response - ', wname, '.png'));
  else
    imwrite (I, cstrcat('Window function and frequency response - ', wname, ' (', wfilespecifier, ').png'));
  endif
  
endfunction

N=128;
k=0:N-1;

w = 0.42 - 0.5*cos(2*pi*k/(N-1)) + 0.08*cos(4*pi*k/(N-1));
plotWindow(w, "Blackman")

w = 0.355768 - 0.487396*cos(2*pi*k/(N-1)) + 0.144232*cos(4*pi*k/(N-1)) -0.012604*cos(6*pi*k/(N-1));
plotWindow(w, "Nuttall", "continuous first derivative")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.028*cos(8*pi*k/(N-1));
plotWindow(w, "SRS flat top")

w = ones(1,N);
plotWindow(w, "Rectangular")

w = (N/2 - abs([0:N-1]-(N-1)/2))/(N/2);
plotWindow(w, "Triangular")

w = 0.5 - 0.5*cos(2*pi*k/(N-1));
plotWindow(w, "Hann")

w = 0.53836 - 0.46164*cos(2*pi*k/(N-1));
plotWindow(w, "Hamming", "alpha = 0.53836")

alpha = 0.5;
w = ones(1,N);
n = -(N-1)/2 : -alpha*N/2;
L = length(n);
w(1:L) = 0.5*(1+cos(pi*(abs(n)-alpha*N/2)/((1-alpha)*N/2)));
w(N : -1 : N-L+1) = w(1:L);
plotWindow(w, "Tukey", "alpha = 0.5")

w = sin(pi*k/(N-1));
plotWindow(w, "Cosine")

w = sinc(2*k/(N-1)-1);
plotWindow(w, "Lanczos")

w = ((N-1)/2 - abs([0:N-1]-(N-1)/2))/((N-1)/2);
plotWindow(w, "Bartlett")

sigma = 0.4;
w = exp(-0.5*( (k-(N-1)/2)/(sigma*(N-1)/2) ).^2);
plotWindow(w, "Gaussian", "sigma = 0.4")

w = 0.62 -0.48*abs(k/(N-1) -0.5) +0.38*cos(2*pi*(k/(N-1) -0.5));
plotWindow(w, "Bartlett–Hann")

alpha = 2;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 2")

alpha = 3;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 3")

tau = N-1;
epsilon = 0.1;
t_cut = tau * (0.5 - epsilon);
T_in = abs(k - 0.5 * tau);
z_exp = ((t_cut - 0.5 * tau) ./ (T_in - t_cut) + (t_cut - 0.5 * tau) ./ (T_in - 0.5 * tau));
sigma =  (T_in < 0.5 * tau) ./ (exp(z_exp) + 1);        
w = 1 * (T_in <= t_cut) + sigma .* (T_in > t_cut);
plotWindow(w, "Planck-taper", "epsilon = 0.1")

w = 0.35875 - 0.48829*cos(2*pi*k/(N-1)) + 0.14128*cos(4*pi*k/(N-1)) -0.01168*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Harris")

w = 0.3635819 - 0.4891775*cos(2*pi*k/(N-1)) + 0.1365995*cos(4*pi*k/(N-1)) -0.0106411*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Nuttall")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

tau = (N/2);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = N/2", "half window decay")

tau = (N/2)/(60/8.69);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = (N/2)/(60/8.69)", "60dB decay")

alpha = 2;
w = 1/2*(1 - cos(2*pi*k/(N-1))).*exp(alpha*abs(N-2*k-1)/(1-N));
plotWindow(w, "Hann-Poisson", "alpha = 2")

原始碼
InfoField

Octave

Source code
function plotWindowLayer (w, N, gridded, wname, wspecifier)
 
  M=32;
  k=0:N-1;
  dr = 120;

  H = abs(fft([w zeros(1,(M-1)*N)]));
  H = fftshift(H);
  H = H/max(H);
  H = 20*log10(H);
  H = max(-dr,H);
 
  figure('Position',[1 1 1200 520])
  subplot(1,2,1)
  set(gca,'FontSize',28)
  area(k,w,'FaceColor', [0 1 1],'edgecolor', [1 1 0],'linewidth', 2)
  xlim([0 N-1])
  if (min(w) >= -0.01)
    ylim([0 1.05])
    set(gca,'YTick', [0 : 0.1 : 1])
    ylabel('amplitude','position',[-16 0.525 0])
  else
    ylim([-1 5])
    set(gca,'YTick', [-1 : 1 : 5])
    ylabel('amplitude','position',[-16 2 0])
  endif
  set(gca,'XTick', [0 : 1/8 : 1]*(N-1))
  set(gca,'XTickLabel',[' 0'; ' '; ' '; ' '; ' '; ' '; ' '; ' '; 'N-1'])
  grid(gridded)
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  xlabel('samples')
  if (strcmp (wspecifier, ""))
    title(cstrcat(wname,' window'))
  else
    title(cstrcat(wname,' window (', wspecifier, ')'))
  endif
  set(gca,'Position',[0.08 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])
  
  subplot(1,2,2)
  set(gca,'FontSize',28)
  h = stem(([1:M*N]-1-M*N/2)/M,H,'-');
  set(h,'BaseValue',-dr)
  ylim([-dr 6])
  set(gca,'YTick', [0 : -10 : -dr])
  set(findobj('Type','line'),'Marker','none','Color',[0 1 1])
  xlim([-M*N/2 M*N/2]/M)
  grid(gridded)
  set(findobj('Type','gridline'),'Color',[.871 .49 0])
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  ylabel('decibels')
  xlabel('bins')
  title('Frequency response')
  set(gca,'Position',[0.59 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])

endfunction

function plotWindow (w, wname, wspecifier = "", wfilespecifier = "")

  if (strcmp (wfilespecifier, ""))
    wfilespecifier = wspecifier;
  endif

  N = size(w)(2);
  B = N*sum(w.^2)/sum(w)^2   % noise bandwidth (bins), set N = 4096 to get an accurate estimate
  
  plotWindowLayer(w, N, "on", wname, wspecifier);  % "gridded" = "on"
  print temp1.png -dpng "-S2500,1165"
  close
  plotWindowLayer(w, N, "off", wname, wspecifier);  % "gridded" = "off"
  print temp2.png -dpng "-S2500,1165"
  close
% I'm not sure what's going on here, but it looks like the author might have been able
% to save himself some time by using set(gca,"Layer","top") and set(gca,"Layer","bottom").
  I = imread ("temp1.png");
  J = imread ("temp2.png");
  info = imfinfo ("temp1.png");
  w = info.Width;
  c = 1-(double(I(:,1:w/2,1))+2*double(J(:,1:w/2,1)))/(255*3);
  m = 1-(double(I(:,1:w/2,2))+2*double(J(:,1:w/2,2)))/(255*3);
  y = 1-(double(I(:,1:w/2,3))+2*double(J(:,1:w/2,3)))/(255*3);
  c = ((c != m) | (c != y)).*(c > 0).*(1-m-y);
  I(:,1:w/2,1) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  I(:,1:w/2,2) = 255*(1-c-m-y + 0*m + 0*y + 0.4*c);
  I(:,1:w/2,3) = 255*(1-c-m-y + 0*m + 0*y + 0.6*c);
  c = 1-(double(I(:,w/2+1:w,1))+2*double(J(:,w/2+1:w,1)))/(255*3);
  m = 1-(double(I(:,w/2+1:w,2))+2*double(J(:,w/2+1:w,2)))/(255*3);
  y = 1-(double(I(:,w/2+1:w,3))+2*double(J(:,w/2+1:w,3)))/(255*3);
  c = ((c != m) | (c != y)).*c;
  I(:,w/2+1:w,1) = 255*(1-c-m-y + 0*m + 0*y + 0.8710*c);
  I(:,w/2+1:w,2) = 255*(1-c-m-y + 0*m + 0*y + 0.49*c);
  I(:,w/2+1:w,3) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  if (strcmp (wfilespecifier, ""))
    imwrite (I, cstrcat('Window function and frequency response - ', wname, '.png'));
  else
    imwrite (I, cstrcat('Window function and frequency response - ', wname, ' (', wfilespecifier, ').png'));
  endif
  
endfunction

N=128;
k=0:N-1;

w = 0.42 - 0.5*cos(2*pi*k/(N-1)) + 0.08*cos(4*pi*k/(N-1));
plotWindow(w, "Blackman")

w = 0.355768 - 0.487396*cos(2*pi*k/(N-1)) + 0.144232*cos(4*pi*k/(N-1)) -0.012604*cos(6*pi*k/(N-1));
plotWindow(w, "Nuttall", "continuous first derivative")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.028*cos(8*pi*k/(N-1));
plotWindow(w, "SRS flat top")

w = ones(1,N);
plotWindow(w, "Rectangular")

w = (N/2 - abs([0:N-1]-(N-1)/2))/(N/2);
plotWindow(w, "Triangular")

w = 0.5 - 0.5*cos(2*pi*k/(N-1));
plotWindow(w, "Hann")

w = 0.53836 - 0.46164*cos(2*pi*k/(N-1));
plotWindow(w, "Hamming", "alpha = 0.53836")

alpha = 0.5;
w = ones(1,N);
n = -(N-1)/2 : -alpha*N/2;
L = length(n);
w(1:L) = 0.5*(1+cos(pi*(abs(n)-alpha*N/2)/((1-alpha)*N/2)));
w(N : -1 : N-L+1) = w(1:L);
plotWindow(w, "Tukey", "alpha = 0.5")

w = sin(pi*k/(N-1));
plotWindow(w, "Cosine")

w = sinc(2*k/(N-1)-1);
plotWindow(w, "Lanczos")

w = ((N-1)/2 - abs([0:N-1]-(N-1)/2))/((N-1)/2);
plotWindow(w, "Bartlett")

sigma = 0.4;
w = exp(-0.5*( (k-(N-1)/2)/(sigma*(N-1)/2) ).^2);
plotWindow(w, "Gaussian", "sigma = 0.4")

w = 0.62 -0.48*abs(k/(N-1) -0.5) +0.38*cos(2*pi*(k/(N-1) -0.5));
plotWindow(w, "Bartlett–Hann")

alpha = 2;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 2")

alpha = 3;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 3")

tau = N-1;
epsilon = 0.1;
t_cut = tau * (0.5 - epsilon);
T_in = abs(k - 0.5 * tau);
z_exp = ((t_cut - 0.5 * tau) ./ (T_in - t_cut) + (t_cut - 0.5 * tau) ./ (T_in - 0.5 * tau));
sigma =  (T_in < 0.5 * tau) ./ (exp(z_exp) + 1);        
w = 1 * (T_in <= t_cut) + sigma .* (T_in > t_cut);
plotWindow(w, "Planck-taper", "epsilon = 0.1")

w = 0.35875 - 0.48829*cos(2*pi*k/(N-1)) + 0.14128*cos(4*pi*k/(N-1)) -0.01168*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Harris")

w = 0.3635819 - 0.4891775*cos(2*pi*k/(N-1)) + 0.1365995*cos(4*pi*k/(N-1)) -0.0106411*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Nuttall")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

tau = (N/2);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = N/2", "half window decay")

tau = (N/2)/(60/8.69);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = (N/2)/(60/8.69)", "60dB decay")

alpha = 2;
w = 1/2*(1 - cos(2*pi*k/(N-1))).*exp(alpha*abs(N-2*k-1)/(1-N));
plotWindow(w, "Hann-Poisson", "alpha = 2")

說明

添加單行說明來描述出檔案所代表的內容

在此檔案描寫的項目

描繪內容

檔案來源 Chinese (Taiwan) (已轉換拼寫)

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸使用者備⁠註
目前2013年2月9日 (六) 16:48於 2013年2月9日 (六) 16:48 版本的縮圖2,500 × 1,123(83 KB)Olli NiemitaloAntialiasing, layout changes, larger font
2005年12月17日 (六) 21:07於 2005年12月17日 (六) 21:07 版本的縮圖1,038 × 419(7 KB)Tiaguito~commonswikifile size. color source: http://en.wikipedia.org/wiki/Window_Function
2005年12月17日 (六) 20:48於 2005年12月17日 (六) 20:48 版本的縮圖1,038 × 419(8 KB)Tiaguito~commonswikisource: http://en.wikipedia.org/wiki/Window_Function author: http://en.wikipedia.org/wiki/User:Bob_K

沒有使用此檔案的頁面。

全域檔案使用狀況

以下其他 wiki 使用了這個檔案: