Ford straight-six engine: Difference between revisions
Line 334: | Line 334: | ||
In June 1980, [[Ford Australia]] updated the crossflow design with a new aluminium head casting developed in conjunction with [[Honda]]. Dubbed Alloy Head and introduced as part of a mid-life update of the [[Ford Falcon (XD)|XD Falcon]], the revised engines were {{convert|24|kg}} lighter, had improved warm-up time, higher power outputs, and reductions in fuel consumption of seven to ten per cent.<ref name=whichcar>{{cite journal|url=https://www.whichcar.com.au/features/ford-falcon/1980-ford-falcon-xd-1-2-review |title=1980 Ford Falcon XD 1/2 review |journal=[[Wheels (magazine)|Wheels]] |first=Peter |last=Robinson |date=November 1980}}</ref> Until 1982, the engines were fitted with a single-barrel Bendix-Stromberg carburettor, but with the introduction of the [[Ford Falcon (XE)|XE Falcon]] from March 1982, they were fitted with a Weber two-barrel carburettor which further increased power outputs and improved fuel consumption over the single-barrel carburettor. The updated engine was designated Alloy Head II. |
In June 1980, [[Ford Australia]] updated the crossflow design with a new aluminium head casting developed in conjunction with [[Honda]]. Dubbed Alloy Head and introduced as part of a mid-life update of the [[Ford Falcon (XD)|XD Falcon]], the revised engines were {{convert|24|kg}} lighter, had improved warm-up time, higher power outputs, and reductions in fuel consumption of seven to ten per cent.<ref name=whichcar>{{cite journal|url=https://www.whichcar.com.au/features/ford-falcon/1980-ford-falcon-xd-1-2-review |title=1980 Ford Falcon XD 1/2 review |journal=[[Wheels (magazine)|Wheels]] |first=Peter |last=Robinson |date=November 1980}}</ref> Until 1982, the engines were fitted with a single-barrel Bendix-Stromberg carburettor, but with the introduction of the [[Ford Falcon (XE)|XE Falcon]] from March 1982, they were fitted with a Weber two-barrel carburettor which further increased power outputs and improved fuel consumption over the single-barrel carburettor. The updated engine was designated Alloy Head II. |
||
In March 1983, direct-port fuel injection using [[Bosch (company)|Bosch]] [[Jetronic LE]] was offered as an option on the 4.1 L engine.<ref>{{cite web| url=https://oldcarbrochures.org/Australia/Ford/Ford/1983-Fork-ZK-Fairlane-Brochure/slides/1983_Ford_ZK_Fairlane-06-07.html |title=1983 Ford ZK Fairlane-06-07| accessdate=28 December 2023}}</ref> With the release of the [[Ford Falcon (XF)|XF Falcon]] the following year, the injected 4.1 was upgraded with Ford's [[Ford EEC#EEC-IV|EEC-IV]] engine management system with Multi Point [[Fuel injection|Electronic Fuel Injection]] (MP-EFI). Changes to the carburettor-based engine were made to accommodate the EFI system. The compression ratio on the 4.1 L was 8.89:1. The cylinder head intake ports had been modified to provide clearance for the injectors, and a new intake manifold was designed and many other changes were made in the engine bay to accommodate the new fuel system. |
|||
===OHC and Intech=== |
===OHC and Intech=== |
Revision as of 00:13, 7 February 2024
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
Ford Inline 6 Engines | |
---|---|
Overview | |
Manufacturer | Ford Motor Company |
Production | 1941–1996 (US) 1960–2016 (Australia) 1961–1995 (Argentina) |
Layout | |
Cylinder block material | Cast iron |
Cylinder head material | Cast iron, aluminium |
Valvetrain | Sidevalve (1941-1953) OHV (1952-1996) SOHC (Australia, 1988-2002) DOHC (Australia, 2002-2016) |
Combustion | |
Turbocharger | Garrett GT3582/GT3576 with intercooler (Australia, 2002-2016) |
Fuel system | Carburetor (1941-1993) CFI (1988-1992) MPFI (1982-2016) |
Management | |
Fuel type | Gasoline |
Cooling system | Water-cooled |
The Ford Motor Company produced straight-six engines from 1906 until 1908 and from 1941 until 2016. In 1906, the first Ford straight-six was introduced in the Model K. The next was introduced in the 1941 Ford. Ford continued producing straight-six engines for use in its North American vehicles until 1996, when they were discontinued in favor of more compact V6 designs.
Ford Australia also manufactured straight-six engines in Australia for the Falcon and Territory models until 2016, when both vehicle lines were discontinued. Following the closure of the Australian engine plant, Ford no longer produces a straight-six gasoline engine.
First generation
The first-generation Ford six-cylinder engines were all flatheads. They were the G- and H-series engines of 226 cu in (3.7 L) used in cars and trucks and the M-series of 254 cu in (4.2 L) used in larger Ford trucks and for industrial applications.
226
Introduced for the 1941 model year, the first Ford L-6 (designated G-series) displaced 226 cu in (3.7 L) and produced 90 hp (67 kW), the same as the Flathead V-8 that year. Like the V-8, it was also a flathead or L-head engine. In 1948, Ford raised the compression of the flathead six or L-6 (designated H-series or Rouge 226) so that it generated 95 hp (71 kW) and 180 lb⋅ft (244 N⋅m) of torque. The G- and H-series engines were used in the full-sized Ford cars and trucks to replace the smaller 136 cu in (2.2 L) Flathead V8 that was used in the 1937 Ford. Ford discontinued production of the H-series engine for the 1951 model year.
254
A 254 cu in (4.2 L) version of the L-6 (designated the M-series or Rouge 254) was used from 1950 to 1953 in F6-series Ford trucks (COE, dump, truck-tractor, etc.), and small Ford school buses. The M-series engine produced 115 hp (86 kW) and 212 lb⋅ft (287 N⋅m). of torque. They were also used in miscellaneous industrial applications, e.g., to power water pumps for irrigation purposes and within vineyards to manage risk by powering giant frost-control propellers on stands in the middle of rows of grapes.
Second generation
Mileage Maker/Cost Clipper | |
---|---|
Overview | |
Production | 1952–1964 |
Layout | |
Displacement |
|
Cylinder bore |
|
Piston stroke |
|
Output | |
Power output |
|
The second generation was a newly designed inline-six, produced from 1952 through 1964; it shared many parts with Ford Y-blocks such as the entire valve train and the problems associated with the Y-block's lubrication system. These engines have the exhaust and intake on the driver's side and the distributor on the passenger side. It is referred to as Mileage Maker or I-Block Mileage Maker (with the "I" referring to "inline") in the passenger cars and Cost Clipper in the trucks.
215
A completely new OHV I-6 was offered for the 1952–53 F-Series. It displaced 215 cu in (3.5 L) and produced 101 hp (75 kW). It was also used in the 1952–53 Ford full-sized cars.
223
The 215 grew to 223 cu in (3.7 L) for the 1954 F-Series. Output was now 115 hp (86 kW) in the trucks and 120 hp (89 kW) in the 1954 Ford cars. Power was up to 137 hp (102 kW) in the 1956 trucks. While not the popular engine option, the 223 cu in (4 L) was the only inline-six offered in the Fairlane (until 1961), Galaxie, and F-Series trucks between 1955 and 1964, causing it to be not quite a rarity, but not easy to come across. The 223 I-6 was also used in 1963–1964 Ford trucks, which also used the Autolite 1100 carburetor with stamping C4TF-E and produced 145 hp (108 kW) with 206 ft-lb of torque, and Mercury Meteor-Monterey in 1961. The 223 was also used in Onan 30EC generator sets and possibly others.[1]
262
A 262 cu in (4.3 L) I-6 version was also produced. The 262 I-6 was built from 1961 to 1964 for use in medium- and heavy-duty Ford trucks. This engine was also used for industrial applications.
Third generation
The third generation was produced at the Lima Engine plant in Lima, Ohio, from 1960 through 1984. Officially dubbed the Thriftpower Six, this engine line is sometimes referred to as the Falcon Six. Note that car companies, including Ford, switched from gross ratings to net horsepower and torque ratings in 1972 (mainly because of the emissions laws being enacted nationwide at the time), so changes in engine compression and emissions controls make comparing engines from various production years (especially pre-1972) difficult.
144
144 Thriftpower Six | |
---|---|
Overview | |
Production | 1960–1964 |
Layout | |
Displacement | 144.3 cu in (2.4 L; 2,365 cc) |
Cylinder bore | 3.5 in (88.9 mm) |
Piston stroke | 2.5 in (63.5 mm) |
Cylinder block material | Cast iron |
Cylinder head material | Cast iron |
Valvetrain | OHV |
Compression ratio | 8.7:1 |
Combustion | |
Fuel system | Carburetor |
Fuel type | Leaded gasoline |
Oil system | Wet sump |
Cooling system | Water-cooled |
Output | |
Power output | 84 hp (63 kW) at 4200 rpm |
Torque output | 134 lb⋅ft (182 N⋅m) at 2000 rpm |
The 144 cu in (2.4 L) inline-six engine was first introduced in the 1960 Ford Falcon. The 144 was made from 1960 through 1964 and averaged 90 hp (67 kW) during the production run. While not known for being powerful or a stout engine, it proved to be economical and could get fairly good gas mileage for the time, up to 30 mpg‑US (8 L/100 km). This small six was the basis for all the Ford "Falcon" straight-six engines. The intake manifold on this series was cast integrally with the cylinder head (this design was also used by Chevrolet with some of their later third-generation inline-sixes, the older engines had separate manifolds); as a result, they could not be easily modified for greater power. This engine had four main bearings and can be identified by the three core plugs on the side of the block.
This engine was used in:
- 1960 - 1964 Ford Falcon
- 1960 - 1964 Ford Ranchero
- 1960 - 1964 Mercury Comet
- 1961 - 1964 Ford E-Series (Econoline)
170
170 Special Six | |
---|---|
Overview | |
Production | 1961–1972 |
Layout | |
Displacement | 169.7 cu in (2.8 L; 2,781 cc) |
Cylinder bore | 3.5 in (88.9 mm) |
Piston stroke | 2.94 in (74.7 mm) |
Compression ratio | 9.1:1 |
Output | |
Power output | 105 hp (78 kW) at 4400 rpm |
Torque output | 156 lb⋅ft (212 N⋅m) at 2400 rpm |
In 1961, the 170 cu in (2.8 L) became an option for the Falcon and Comet lines. The 170 Special Six was a stroked version of the 144, increasing the stroke from 2.5 to 2.94 in (63.5 to 74.7 mm). The original 1965 Ford Mustang used a 101 hp (75 kW) version from March (production start) through July 1964. The Econoline van and Ford Bronco received a heavier-duty version with mechanical valve lifters. This engine had four main bearings and can be identified by the three core plugs on the side of the block. The 170 Special was dropped from production in 1972.
As used in the Argentinian-made Ford Falcon from 1962 until 1970, this engine produced 96 hp (72 kW) at 4400 rpm.
187
From 1965 to 1969, Ford Argentina produced a specific 186.7 cu in (3.1 L; 3,060 cc) block similar to the earlier 200 cu in (3.3 L), with four main bearings and a 3.126 in (79.4 mm) stroke) but with a 3.56 in (90.4 mm) bore. It was replaced by the 188 cu in (3.1 L) from 1969. Power was rated at 116 hp (87 kW).
200
The 200.0 cu in (3.3 L; 3,278 cc) inline-six model was introduced in the middle of 1963 with 3.685 by 3.126 in (93.6 by 79.4 mm) bore and stroke, and shared the four main bearing design of the 170. Early 200s can be identified by three core plugs. Beginning in 1965, the 200s were upgraded to seven main bearings to reduce harmonic vibrations and increase durability. The 1965 and later engines can be identified by four core plugs and the casting code C5DE-H. The 1965 Mustang (August 1964 onward) used this engine as standard, rated at 120 hp (89 kW). The Mustang continued to use the 200 as its base engine until it was dropped in 1971. Starting in 1966, a six-bolt bellhousing flange block was introduced. Beginning in 1980, one version of the 200 block was redesigned with a bell housing flange and a low-mount starter very similar to the low-mount starter 250 inline-six. This version is easily identified by starter location down by the oil pan rail and is referred to as the Big Bell 200. The big bell design is uncommon, but sought after by I-6 performance enthusiasts because it can be modified to accept a Ford small block V8 six bolt bell housing. There were concurrent high-mount starter 200 blocks made till 1983 model year, and they are more common than low-mount starter 200s.
When Ford launched the third-generation Fox body Mustang in 1979, the original engine lineup included the Cologne V6. The same engine was also offered in the hugely successful Ford of Europe Capri Mk II. The 2.8L V6 engine was a popular option for the US Mustang and the European Capri Mk II, and as a result, the Cologne engine plant could not meet the demand for engines for both continents. As a result, the Cologne 2.8L V6 was dropped from the Mustang's engine lineup in the middle of the 1979 production year and replaced with the 200 Falcon inline-six, which was then referred to as the 3.3L engine. The engine and front suspension K-member were transferred from the Fairmont, which helped reduce costs instead of having to redesign the Mustang for a different engine.
The 200 was used in the Ford Maverick and Mercury Comet and continued in the Ford Fairmont and Mercury Zephyr until they were discontinued at the end of the 1983 model year. The 1975–80 Ford Granada and Mercury Monarch offered the 200 inline-six as the standard engine. For 1981–82 the Ford Granada was redesigned and common with an expanded line of Mercury Cougars which used the 200 inline-six as the standard engine. From mid-year 1980 through 1982 the Ford Thunderbird and Mercury Cougar XR-7 used the 200 inline-six as the standard engine. The Ford LTD and Mercury Marquis, introduced in 1983 as the successors to the Granada and Cougar (non-XR7 models), carried over the 200 engine until it was replaced by the 3.8L Essex V6 for 1984.
Ford was also having problems meeting demand for its 2.3L OHC engine, which was used in a multitude of models worldwide. In anticipation of another engine shortage, the Ford engine plant in Lima, Ohio, which was already producing the 2.3-liter OHC engine, decided they could modify the Falcon inline six block casting molds to remove cylinders 4 and 5 to create a four-cylinder engine. A cast-iron high-swirl cylinder head was developed, and the motor was designated the 2.3L HSC to help differentiate it from the same displacement 2.3L OHC design. This motor shared many common parts with the 200, and it is common for persons rebuilding their 200 engines to use the 2.3L HSC pistons as a cheap replacement.
Applications:
- 1963–1967 Ford Ranchero
- 1963–1969 Ford Fairlane (Americas)
- 1964–1970 Ford Falcon (North America)
- 1965–1971 and 1979–1982 Ford Mustang
- 1968–1969 Ford Torino
- 1970–1977 Ford Maverick (Americas)
- 1975–1982 Ford Granada (North America)
- 1978–1983 Ford Fairmont
- 1973–1977 Ford Bronco
- 1980–1982 Ford Thunderbird (eighth generation)
- 1983 Ford LTD (Americas)
- 1964–1967 and 1971–1977 Mercury Comet
- 1975–1980 Mercury Monarch
- 1978–1983 Mercury Zephyr
- 1979–1982 Mercury Capri
- 1980–1982 Mercury Cougar
- 1983 Mercury Marquis
250
The 250.2 cu in (4.1 L; 4,100 cc) inline-six engine was offered in 1969 in the Mustang, and 1970 in compact Ford cars (Maverick). The 250 was a stroked 200, made by increasing the stroke from 3.126 to 3.91 in (79.4 to 99.3 mm). Output was 155 hp (116 kW) in the Mustang, and the 250 became the base engine in 1971. The Ford Granada and Mercury Monarch offered the 250 inline-six for the 1975–1980 model years, when it was replaced by the 200 inline-six.
Power was re-evaluated at 98 hp (73 kW) for 1972 (because of power rating changes) and 88 hp (66 kW) the next year. This engine had seven main bearings, and can be identified by the five core plugs on the side of the block. The block uses a low-mount starter and six bellhousing bolts, sharing its bellhousing pattern with the 302 and 351 Windsor V8s, late (1965–68) 289, early 4.6L V8, and the 240 and 300 inline-six. Production of the 250 ended in 1980.
Applications:
- 1968–1976 Ford Ranchero
- 1968–1973 Ford Torino
- 1969–1973 Ford Mustang
- 1970–1977 Ford Maverick (Americas)
- 1975–1980 Ford Granada (North America)
- 1972–1982 Ford Cortina
- 1968–1969 Mercury Comet
- 1972–1976 Mercury Montego
- 1975–1980 Mercury Monarch
Fourth generation
Truck Six | |
---|---|
Overview | |
Production | 1964–1996 |
Layout | |
Displacement |
|
Cylinder bore | 4 in (101.6 mm) |
Piston stroke | 3.18 in (80.8 mm) (240) 3.98 in (101.1 mm) (300) |
Combustion | |
Fuel system |
|
Output | |
Power output | 114 hp (85 kW) to 150 hp (112 kW) |
Torque output | 260 lb⋅ft (353 N⋅m) |
Produced at the Cleveland Engine plant in Brook Park, Ohio, from 1964 through 1996, the 240 and 300 inline-six engines are well known for their durability. Their simple design and rugged construction continue to endear these engines to a number of Ford enthusiasts to this day. The engine has earned the monikers "bulletproof" and "indestructible" by many.
One example of the engine's sturdy design is the fact that no timing chain or timing belt (both of which can break, causing unwanted downtime or even engine damage, although this is extremely unlikely in the case of a chain) is used. This generation of Ford Six was designed with long-wearing gears for that purpose instead. These engines also employed seven main bearings.
Both the 240 and the 300, no matter the application, used a single-barrel Autolite 1100/1101 (or Carter YF/A) carburetor until the introduction of electronic fuel injection in 1987. With proper gearing, many F-Series trucks and Broncos achieve 20 mpg‑US (12 l/100 km). This fact was heavily used by Ford's advertising campaign (some television advertisements and written literature even claimed 30 mpg‑US (8 l/100 km)), since the V8 engines in these trucks rarely achieved over 14 mpg‑US (17 L/100 km).
The fuel economy of the 300 makes the engine a popular choice among truck enthusiasts that want both power and economy. The addition of performance parts (such as intake and exhaust manifolds with a four-barrel carburetor) place the engine power output near the same levels as the stock "HO" (High Output) version of the optional 351 V8, with little or no change in economy.
240
The 240 cu in (3.9 L) inline-six for 1965–1972 full-sized cars (continued to 1974 in fleet models) and 1965–1977 trucks and vans produced 150 hp (112 kW) (gross). In stationary service (generators and pumps) fueled by LPG or natural gas, this is known as the CSG-639. The 240 had a bore of 4 in (102 mm) and a stroke of 3.18 in (81 mm).
300
The 300 cu in (4,918 cc) six was first offered in the F-Series for 1965. It is essentially a 240 cu in (3.9 L) with a longer stroke of 3.98 in (101 mm). The two engines are nearly identical; the differences are in the rotating assembly and combustion chamber sizes in the head (the heads are interchangeable). It produced 170 hp (127 kW) (gross). The 300 became the base F-Series engine in 1978 at 114 hp (85 kW) (horsepower number changes due to Ford switching to net power ratings in 1971). Power outputs were increased to roughly 122 hp (91 kW) during the early 1980s, before fuel injection was introduced. This became the primary engine of the line, eclipsing the 240. Unlike the Falcon engine, it featured separate intake and exhaust manifolds, which could be easily replaced with aftermarket manifolds offering the promise of even more power, through the installation of larger carburetors and a higher flowing exhaust system.
Also during the late 1960s and early 1970s, the 300 was used in larger vehicles such as dump trucks, many weighing into the 15,000 lb (6,804 kg) to 20,000 lb (9,072 kg) range. These engines were equipped with a higher flow HD (Heavy Duty) exhaust manifold and forged crankshafts and rods since the engines were going to be constantly working in the 3,000–4,000 rpm range. These rare yet effective manifolds had a much higher exhaust flow rate because many of these engines would spend hours at 3,000 rpm or more. Due to their straightforward and high flowing design, enthusiasts often seek these manifolds out because they allow turbochargers to be easily retrofitted to the engine.
Beginning in 1978, the engine displacement was advertised in metric, becoming "4.9 L." Fuel injection and other changes in 1987 pushed output up to 150 hp (112 kW) horsepower with an 8.8:1 compression ratio. Even though this engine was renowned for its durability, low-end torque, and ease of service, it was gradually phased out. Production ended in 1996, making it the last inline-six gasoline engine offered in a Ford car or light truck in North America. It was replaced by the 4.2L Essex V6 for 1997 in the radically redesigned F-150 and the E-150 and E-250. The 300 was mated to the Ford C6, E4OD, AOD, ZF S5-42 and S5-47 transmissions, as well as the Mazda built M5OD 5-speed manual transmission, and the Borg-Warner T18, Tremec RTS, and New Process NP435 4-speed manual transmissions.
Race car driver Scott Donohue raced a rally truck with a Ford 300 inline-six in it and won the Baja 1000 three times. This engine is also used by Stewart & Stevenson in the MA Baggage Tow Tractor,[2] and Harlan in their standard tow tractors,[3] as well as a multitude of other pieces of equipment, such as ski lifts, power generators, wood chippers, tractors, and, until they converted to diesel engines, most UPS trucks. In stationary service (generators and pumps) fueled with LPG or natural gas, this engine is known as the CSG-649.
Applications:
- 1965–1996 Ford F-Series (F-100, F-150, F-250, F-350, and F-600)[4]
- 1968–1996 Ford E-Series (E-100, E-150, E-250, and E-350)[5]
- 1980–1992 Ford Bronco
Ford Australia
With local production of the Ford Falcon starting in 1960, Ford Australia began to offer the same inline-six engines as offered in North America. In Australia, the engine underwent significant updates to its design over the following decades, ultimately remaining in production for 56 years.
Initially, the 144 and 170 cu in 'Pursuit' engines were offered; the 144 being eventually discontinued in late 1966. As in North America, a 200 cu in 'Super Pursuit' motor was added in February 1964. In 1968, the deck height of the design was increased to make room for increased crankshaft stroke, resulting in displacements of 188 and 221 cu in (badged 3.1 and 3.6 litres). They superseded the 170 and 200 engines in the lineup. The 188 and 221 also powered the Ford Falcon (Argentina) from 1970 to 1991. These engines both shared a 3.68 in (93.5 mm) bore, with strokes of 2.94 or 3.46 in (74.7 or 87.9 mm) respectively. The actual displacements are 187.6 and 220.8 cu in (3.1 and 3.6 L; 3,075 and 3,618 cc).
200 and 250
In 1970, Ford Australia enlarged the motors to 200 and 250 cu in. The head was of the same design as previous models, with an integral intake catering for a single-barrel Bendix-Stromberg carburettor. In the configuration, the Falcon 250 I-6 was rated at 155 hp (116 kW). Also in 1970, the Falcon Inline 6, on both 200 and 250 cu in variants, became available on locally manufactured Ford Cortinas, Around this time, the company also developed the '2V' ('two venturi', or '2 barrel' in Ford terminology, reflecting a new 2-barrel carburettor as opposed to the previous single-barrel) cylinder head, which in all respects was similar to the previous integral "log head" intake, with the exception of a removable aluminium intake which mounted a Bendix-Stromberg WW two-barrel carburettor. To take advantage of the much improved breathing ability that the removable intake brought to the new head, the 250-2V also featured a much better breathing exhaust manifold. The result was the engine being rated at 128 kW (172 hp).
For years, the 250-2V cylinder head was very popular for racing and many have been imported to North America, where owners of cars with the Falcon inline six have upgraded their engines with the better cylinder head.
Crossflow, Alloy Head, Alloy Head II and EFI
From 1 July 1976, new emission standards came into effect with Australian Design Rule 27A, which set limits for the emissions of hydrocarbons, carbon monoxide, and oxides of nitrogen. In an effort to maintain horsepower output while complying with the new standards, Ford Australia updated the engines with a new cast-iron crossflow head design with larger, canted valves, and an aluminium water-heated intake manifold to improve gas flow and warm-up.[6] Other changes included the introduction of an exhaust gas recirculation valve, and positive crankcase ventilation. Introduced with the XC Falcon, engine displacements remained 200 and 250 cu in, but were now badged 3.3 and 4.1 litres, respectively. While quoted power outputs dropped from 130 to 107 horsepower (97 to 80 kW) for the 3.3, and from 155 to 123 horsepower (116 to 92 kW) for the 4.1, power was now measured using the DIN rather than SAE gross method, and the new crossflow engines reportedly generated higher actual power outputs than their immediate predecessors.[6] Whereas the previous integral "log head" I-6 motor borrowed from the Ford FE engine family design, the new crossflow motor borrowed from the Ford Cleveland engine family. A common upgrade for a crossflow head engine is to use 351 Cleveland roller tip rocker arms.
In June 1980, Ford Australia updated the crossflow design with a new aluminium head casting developed in conjunction with Honda. Dubbed Alloy Head and introduced as part of a mid-life update of the XD Falcon, the revised engines were 24 kilograms (53 lb) lighter, had improved warm-up time, higher power outputs, and reductions in fuel consumption of seven to ten per cent.[7] Until 1982, the engines were fitted with a single-barrel Bendix-Stromberg carburettor, but with the introduction of the XE Falcon from March 1982, they were fitted with a Weber two-barrel carburettor which further increased power outputs and improved fuel consumption over the single-barrel carburettor. The updated engine was designated Alloy Head II.
In March 1983, direct-port fuel injection using Bosch Jetronic LE was offered as an option on the 4.1 L engine.[8] With the release of the XF Falcon the following year, the injected 4.1 was upgraded with Ford's EEC-IV engine management system with Multi Point Electronic Fuel Injection (MP-EFI). Changes to the carburettor-based engine were made to accommodate the EFI system. The compression ratio on the 4.1 L was 8.89:1. The cylinder head intake ports had been modified to provide clearance for the injectors, and a new intake manifold was designed and many other changes were made in the engine bay to accommodate the new fuel system.
OHC and Intech
In 1988, the inline six engines underwent a major redesign for the EA26 Falcon and now featured a new single overhead cam (SOHC) crossflow aluminium head. The camshaft and auxiliary shaft are driven by a 'duplex' chain. The duplex chain drives the distributor and the oil pump shafts. The camshaft is supported on the cylinder head by using 'topless' bearings. Bearing liners are not used. The camshaft is held in position using valve spring pressure. Hydraulic lash adjusters mounted on the rocker arms are used to provide zero valve lash. As with all previous and current models, the block is cast iron, but with a reduction in the cylinder bore to try to reduce emissions.
The SOHC engines were offered as the 3.2 L (with throttle body injection) and the 3.9 L (with throttle body or multipoint fuel injection). In 1989, the 3.2 L TBI version was discontinued, and in 1991, the 3.9 L's displacement was enlarged to 4.0 L (now only with MPI) and was rated at 148 kW (198 hp). In 1994, a dual resonance intake manifold for the EF series was introduced, with power increasing to 157 kW (211 hp). With the sports-oriented XR6 variant becoming an increasingly significant model, a high output version of the engine was now standard for this model, boasting 164 kW (220 hp). Also for the EF series Falcon, the standard engine employed a high-energy coil-pack ignition system. However, the subsequent EL Falcon reverted to a distributor/coil ignition setup.
Ford Australia redesigned the I-6 again, naming it the Intech, in 1998 alongside the introduction of the Ford Falcon (AU), and increased the main bearing size and added a ladder style main stud girdle integral with the oil pan to increase low end rigidity. The engine also received variable camshaft timing technology in some XR6 models, Fairlane/LTD models and the Fairmont Ghia which allowed the ECU to advance or retard camshaft timing depending on engine speed, which results in a broader power band. Power outputs for the base model Falcon Forte, Fairmont, and the standard XR6 were unchanged from their EL series predecessors, but a new 172 kW (231 hp) XR6 VCT model was offered. The Fairmont Ghia, Fairlane and LTD models were also equipped with a 168 kW (225 hp) variant of the VCT engine.
Barra
In 2002, the engine underwent a significant upgrade receiving dual overhead cams (DOHC) with variable cam timing and coil-on-plug ignition. The engine gained the nickname "Barra", named after the "Barramundi" code name used during the development of the Ford Falcon (BA). Producing 182 kW (244 hp) and 380 N⋅m (280 lb⋅ft), it debuted in the Ford Falcon (BA) of 2002 and also powered the Ford Territory introduced in 2004. In October 2005, alongside the introduction of the Ford Falcon (BF) and Ford Territory (SY), these outputs rose to 190 kW (255 hp) and 383 N⋅m (282 lb⋅ft). In 2008 the Barra was upgraded a final time, debuting in the Ford Falcon (FG) with power outputs of 195 kW (261 hp) and 391 N⋅m (288 lb⋅ft).
Turbocharged versions were also manufactured. The initial version, known as Barra 240T with 240 kW (322 hp) and 450 N⋅m (330 lb⋅ft) of torque was offered between 2002 and 2005 in the BA Falcon XR6 Turbo, as well as the Territory Turbo. This was followed in the BF and BF Mk II XR6 Turbo (between 2005 and 2008) by the Barra 245T producing 245 kW (329 hp) of power and 480 N⋅m (350 lb⋅ft) of torque, which in turn was followed by the Barra 270T from 2008-2016 in the FG and FG X XR6 Turbo and G6E Turbo models producing 270 kW (362 hp) of power and 533 N⋅m (393 lb⋅ft) of torque.
Ford Australia's high-performance division, Ford Performance Vehicles (FPV), created even more powerful turbocharged variants. The first turbocharged straight-6-engined car from FPV was the BA Mk II F6 Typhoon (2004), which produced 270 kW (362 hp) of power and 550 N⋅m (410 lb⋅ft) of torque. The first power and torque upgrade came with the FG range of 2008, which saw outputs rise to 310 kW (416 hp) of power @ 5500 rpm and 565 N⋅m (417 lb⋅ft) of torque. This engine, the Barra 310T, was the first Australian-built engine to achieve over 100 hp per litre.[9]
The ultimate iteration of the Barra engine was installed in the limited-production FG X XR6 Sprint (limited to 500 units) of 2016. This engine produced 325 kW (436 hp) @ 6000rpm and 576 N⋅m (425 lb⋅ft) @ 2750 rpm. The engine features an overboost function that can increase output to 370 kW (496 hp) and 650 N⋅m (480 lb⋅ft) for up to ten seconds.[10]
Ford Australia had intended to discontinue production of the I-6 engine at their engine plant in Geelong in 2010 and replace it in the Falcon and Territory models with an imported V6 engine, although later reversed this decision in favour of upgrading the Barra to meet then-upcoming Euro IV emissions standards.[11][12] This would prove to be only a temporary stay of execution as the Geelong factory eventually closed on 26 September 2016, following Ford's decision in May 2013 to discontinue the Falcon and Territory and cease manufacture of vehicles in Australia.[13]
Ford Falcon (Australia) straight-six engines
Falcon model | Capacity | Induction | Valvetrain | Fuel | Power | Torque | Notes |
---|---|---|---|---|---|---|---|
XY, XA, XB | 3.3 L | Carburettor | OHV | Leaded | 96 kW (129 hp) | 257 N⋅m (190 lb⋅ft) | SAE measurements |
XY, XA, XB | 4.1 L | Carburettor | OHV | Leaded | 116 kW (156 hp) | 325 N⋅m (240 lb⋅ft) | SAE measurements |
XC | 3.3 L | Carburettor | OHV | Leaded | 80 kW (107 hp) | 220 N⋅m (162 lb⋅ft) | Crossflow cylinder head |
XD | 3.3 L | Carburettor | OHV | Leaded | 82 kW (110 hp) | 228 N⋅m (168 lb⋅ft) | Crossflow cylinder head (alloy head on XD series July 1980 onwards) |
XC | 4.1 L | Carburettor | OHV | Leaded | 92 kW (123 hp) | 289 N⋅m (213 lb⋅ft) | Crossflow cylinder head |
XD | 4.1 L | Carburettor | OHV | Leaded | 94 kW (126 hp) | 305 N⋅m (225 lb⋅ft) | Alloy cylinder head - July 1980 onwards |
XE, XF pre-1/1986 | 3.3 L | Carburettor | OHV | Leaded | 90 kW (121 hp) | 240 N⋅m (177 lb⋅ft) | Alloy head II |
XE, XF pre-1/1986 | 4.1 L | Carburettor | OHV | Leaded | 98 kW (131 hp) | 305 N⋅m (225 lb⋅ft) | Alloy head II |
XE | 4.1 L | EFI | OHV | Leaded | 111 kW (149 hp) | 325 N⋅m (240 lb⋅ft) | Bosch LE II Jetronic fuel injection |
XF 1/1986 onwards | 4.1 L | Carburettor | OHV | Unleaded | 98 kW (131 hp) | 297 N⋅m (219 lb⋅ft) | |
XF pre-1/1986 | 4.1 L | EFI | OHV | Leaded | 120 kW (161 hp) | 333 N⋅m (246 lb⋅ft) | Ford EEC-IV Multi-point EFI |
XF 1/1986 onwards | 4.1 L | EFI | OHV | Unleaded | 123 kW (165 hp) | 325 N⋅m (240 lb⋅ft) | Ford EEC-IV Multi-point EFI |
EA | 3.2 L | EFI | SOHC | Unleaded | 90 kW (121 hp) | 235 N⋅m (173 lb⋅ft) | |
EA, EB | 3.9 L | EFI | SOHC | Unleaded | 120 kW (161 hp) | 311 N⋅m (229 lb⋅ft) | |
EA, EB | 3.9 L | EFI | SOHC | Unleaded | 139 kW (186 hp) | 338 N⋅m (249 lb⋅ft) | EEC-IV Multi-point injection |
EB series II, ED | 4.0 L | EFI | SOHC | Unleaded | 148 kW (198 hp) | 348 N⋅m (257 lb⋅ft) | |
XR6 EBII, ED | 4.0 L | EFI | SOHC | Unleaded | 161 kW (216 hp) | 361 N⋅m (266 lb⋅ft) | Tickford enhanced |
EF, EL, AU series I, II & III | 4.0 L | EFI | SOHC | Unleaded | 157 kW (211 hp) | 357 N⋅m (263 lb⋅ft) | Two-stage broadband intake manifold, coil-pack ignition system (EF and AU Only) |
XR6 EF, EL, AU series I, II & III | 4.0 L | EFI | SOHC | Unleaded | 164 kW (220 hp) | 366 N⋅m (270 lb⋅ft) | Tickford enhanced, also standard fitment on EF and EL Fairmont Ghia |
AU series II and III | 4.0 L | EFI | SOHC | LPG | 143 kW (192 hp) | 362 N⋅m (267 lb⋅ft) | Dedicated LPG |
Fairmont Ghia AU series I, II & III | 4.0 L | EFI | SOHC | Unleaded | 168 kW (225 hp) | 370 N⋅m (273 lb⋅ft) | VCT Variable valve timing |
XR6 AU series I, II & III | 4.0 L | EFI | SOHC | Unleaded | 172 kW (231 hp) | 374 N⋅m (276 lb⋅ft) | VCT Variable valve timing, performance exhaust |
BA | 4.0 L | EFI | DOHC | Unleaded | 182 kW (244 hp) | 380 N⋅m (280 lb⋅ft) | Dual overhead camshaft, VCT Variable valve timing |
BA XR6 Turbo | 4.0 L | EFI | DOHC | Unleaded | 240 kW (322 hp) | 450 N⋅m (332 lb⋅ft) | Garrett GT3582 turbocharger |
BF | 4.0 L | EFI | DOHC | Unleaded | 190 kW (255 hp) | 383 N⋅m (282 lb⋅ft) | |
BF XR6 Turbo | 4.0 L | EFI | DOHC | Unleaded | 245 kW (329 hp) | 480 N⋅m (354 lb⋅ft) | Garrett GT3582 turbocharger |
FG, FG X | 4.0 L | EFI | DOHC | Unleaded | 195 kW (261 hp) | 391 N⋅m (288 lb⋅ft) | |
FG, FG X ECO-LPI | 4.0 L | EFI | DOHC | LPG | 198 kW (266 hp) | 409 N⋅m (302 lb⋅ft) | Dedicated LPG |
FG, FG X XR6 Turbo | 4.0 L | EFI | DOHC | Unleaded | 270 kW (362 hp) | 533 N⋅m (393 lb⋅ft) | Garrett GT3576 turbocharger |
FG X XR6 Sprint | 4.0 L | EFI | DOHC | Unleaded | 325 kW (436 hp) | 576 N⋅m (425 lb⋅ft) | 370 kW (496 hp) and 650 N⋅m (479 lb⋅ft) with overboost function. |
FPV F6 model | Capacity | Induction | Valvetrain | Fuel | Power | Torque | Notes |
---|---|---|---|---|---|---|---|
BA MkII, BF | 4.0 L | EFI | DOHC | Unleaded | 270 kW (362 hp) | 550 N⋅m (406 lb⋅ft) | |
FG | 4.0 L | EFI | DOHC | Unleaded | 310 kW (416 hp) | 565 N⋅m (417 lb⋅ft) |
References
- ^ "A REAL SURVIVOR 1964 ONAN 30 EC". YouTube. Archived from the original on 2021-12-05.
- ^ "Baggage Tow Tractor" (PDF). AERO Specialties. 2002. Archived from the original (PDF) on 24 March 2006. Retrieved 12 January 2022.
- ^ "Harlan HT-50" (PDF). Aviation GSE. Retrieved 8 August 2022.
- ^ "1969 Ford Trucks" (PDF).
- ^ "1997 Ford Econoline Vans" (PDF).
- ^ a b "1976 Ford Falcon XC reveal". Wheels. September 1976.
- ^ Robinson, Peter (November 1980). "1980 Ford Falcon XD 1/2 review". Wheels.
- ^ "1983 Ford ZK Fairlane-06-07". Retrieved 28 December 2023.
- ^ "Ford Barra engine tuning guide". WhichCar. Retrieved 2022-02-10.
- ^ "2016 Ford Falcon XR6 Sprint Review - Drive".
- ^ "Ford's Geelong plant to close, 600 jobs lost". ABC News. 2007-07-18. Retrieved 2022-02-10.
- ^ "Ford backflips on Vic plant closure". Drive. 2008-11-19. Retrieved 2022-02-10.
- ^ "1,200 jobs to go as Ford closes Australian plants". ABC News. 2013-05-23. Retrieved 2022-02-10.