9000 (number)
Appearance
(Redirected from 9001 (number))
| ||||
---|---|---|---|---|
Cardinal | nine thousand | |||
Ordinal | 9000th (nine thousandth) | |||
Factorization | 23 × 32 × 53 | |||
Greek numeral | ,Θ´ | |||
Roman numeral | MX, or IX | |||
Unicode symbol(s) | MX, mx, IX, ix | |||
Binary | 100011001010002 | |||
Ternary | 1101001003 | |||
Senary | 1054006 | |||
Octal | 214508 | |||
Duodecimal | 526012 | |||
Hexadecimal | 232816 | |||
Armenian | Ք |
9000 (nine thousand) is the natural number following 8999 and preceding 9001.
Selected numbers in the range 9001–9999
[edit]9001 to 9099
[edit]- 9001 – sexy prime with 9007
- 9007 – sexy prime with 9001
- 9009 – centered cube number[1]
- 9025 = 952, centered octagonal number
- 9029 – Sophie Germain prime
- 9041 – super-prime
- 9045 – triangular number
- 9059 – Sophie Germain prime
- 9072 – decagonal number
- 9077 – Markov number[2]
- 9091 – unique prime[3]
9100 to 9199
[edit]- 9103 – super-prime
- 9126 – pentagonal pyramidal number[4]
- 9139 – tetrahedral number[5]
- 9175 – smallest (provable) generalized Sierpiński number in base 10: 9175*10n+1 is always divisible by one of the prime numbers {7, 11, 13, 73}.[6]
- 9180 – triangular number
9200 to 9299
[edit]- 9216 = 962
- 9221 – Sophie Germain prime
- 9224 – octahedral number[7]
- 9241 – cuban prime of the form x = y + 1[8]
- 9261 = 213, largest 4 digit perfect cube
- 9272 – weird number[9]
- 9283 – centered heptagonal number
- 9293 – Sophie Germain prime, super-prime
9300 to 9399
[edit]- 9316 – triangular number
- 9319 – super-prime
- 9334 – nonagonal number
- 9349 – Lucas prime,[10] Fibonacci number
- 9361 - star number
- 9371 – Sophie Germain prime
- 9376 – 1-automorphic number
- 9397 – balanced prime
9400 to 9499
[edit]- 9403 – super-prime
- 9409 = 972, centered octagonal number
- 9419 – Sophie Germain prime
- 9439 – completes the twelfth prime quadruplet set
- 9453 – triangular number
- 9455 – square pyramidal number[11]
- 9457 – decagonal number
- 9461 – super-prime, twin prime
- 9467 – safe prime
- 9473 – Sophie Germain prime, balanced prime, Proth prime
- 9474 – Narcissistic number in base 10
- 9479 – Sophie Germain prime
- 9496 – Telephone/involution number
9500 to 9599
[edit]- 9511 - prime number
- 9521 - prime number
- 9533 - prime number
- 9539 – Sophie Germain prime, super-prime
- 9551 – first prime followed by as many as 35 consecutive composite numbers
- 9587 – safe prime, follows 35 consecutive composite numbers
- 9591 – triangular number
- 9592 - amount of prime numbers under 100,000
9600 to 9699
[edit]- 9601 – Proth prime
- 9604 = 982
- 9619 – super-prime
- 9629 – Sophie Germain prime
- 9647 – centered heptagonal number
- 9661 – super-prime, sum of nine consecutive primes (1049 + 1051 + 1061 + 1063 + 1069 + 1087 + 1091 + 1093 + 1097)
- 9689 – Sophie Germain prime
- 9699 – nonagonal number
9700 to 9799
[edit]- 9721 – prime of the form 2p-1
- 9730 – triangular number
- 9739 – super-prime
- 9743 – safe prime
- 9791 – Sophie Germain prime
9800 to 9899
[edit]- 9800 – member of a Ruth-Aaron pair (first definition) with 9801
- 9801 = 992, the largest 4 digit perfect square, centered octagonal number, square pentagonal number, member of a Ruth-Aaron pair (first definition) with 9800
- 9833 – super-prime
- 9839 – safe prime
- 9841 - star number
- 9850 – decagonal number
- 9855 – magic constant of n × n normal magic square and n-Queens Problem for n = 27.
- 9857 – Proth prime
- 9859 – super-prime
- 9870 – triangular number
- 9871 – balanced prime
- 9880 – tetrahedral number[12]
- 9887 – safe prime
9900 to 9999
[edit]- 9901 – unique prime, sum of seven consecutive primes (1381 + 1399 + 1409 + 1423 + 1427 + 1429 + 1433)[13]
- 9905 – number of compositions of 16 whose run-lengths are either weakly increasing or weakly decreasing[14]
- 9923 – super-prime, probably smallest certainly executable prime number on x86 MS-DOS[15]
- 9949 – sum of nine consecutive primes (1087 + 1091 + 1093 + 1097 + 1103 + 1109 + 1117 + 1123 + 1129)
- 9973 – super-prime
- 9988 – number of prime knots with 13 crossings
- 9999 – Kaprekar number, repdigit
Prime numbers
[edit]There are 112 prime numbers between 9000 and 10000:[16][17]
- 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973
References
[edit]- ^ Sloane, N. J. A. (ed.). "Sequence A005898 (Centered cube numbers: n^3 + (n+1)^3.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002559". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A040017 (Prime 3 followed by unique period primes (the period r of 1/p is not shared with any other prime) of the form A019328(r)/gcd(A019328(r),r) in order (periods r are given in A051627).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002411". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000292". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Brunner, Amy; Caldwell, Chris K.; Krywaruczenko, Daniel; Lownsdale, Chris (2009). "GENERALIZED SIERPIŃSKI NUMBERS TO BASE b" (PDF). 数理解析研究所講究録 [Notes from the Institute of Mathematical Analysis (in, New Aspects of Analytic Number Theory)]. 1639. Kyoto: RIMS: 69–79. hdl:2433/140555. S2CID 38654417.
- ^ Sloane, N. J. A. (ed.). "Sequence A005900". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes: primes which are the difference of two consecutive cubes.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006037 (Weird numbers: abundant (A005101) but not pseudoperfect (A005835).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005479 (Prime Lucas numbers (cf. A000032).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000330". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ^ "Sloane's A040017 : Unique period primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ^ Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
- ^ An Executable Prime Number?, archived from the original on 2010-02-10
- ^ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.