Jump to content

Contact-electro-catalysis

From Wikipedia, the free encyclopedia

Contact-electro-catalysis is an emerging field of catalysis that explores the contact-electrification (also known as triboelectric effect) effect (also known as triboelectricity) to facilitate chemical reactions. It bridges the concepts of CE and mechanochemistry, utilizing mechanical stimuli to induce electron transfer between materials and thereby catalyze chemical processes. CEC was first proposed in 2022 by using dielectric materials (e.g., FEP) to catalyze the degradation of methyl orange (a refractory and mutagenic organic compound) in solution.[1] The definition of CEC refers to a process that exploits the electron transfer during contact-electrification (CE) to promote chemical reactions.[1] The solid to be used in CEC involves pristine polymers (Teflon),[2][3][4] inorganics (SiO2),[5][6] and matrix composites.[7][8][9] The energy source of CEC is mechanical stimuli such as ultrasonication and ball milling.[1][2][10] The application fields of CEC include organic pollutants degradation,[1][6] [11][12] direct synthesis of H2O2, [13][14] recycle of spent lithium-ion batteries (LIBs), [5] and continuous synthesis of ammonia. [15]

References

[edit]
  1. ^ a b c d Wang, Ziming; Berbille, Andy; Feng, Yawei; Li, Site; Zhu, Laipan; Tang, Wei; Wang, Zhong Lin (2022-01-10). "Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders". Nature Communications. 13 (1): 130. Bibcode:2022NatCo..13..130W. doi:10.1038/s41467-021-27789-1. ISSN 2041-1723. PMC 8748705. PMID 35013271.
  2. ^ a b Wang, Ziming; Dong, Xuanli; Li, Xiao-Fen; Feng, Yawei; Li, Shunning; Tang, Wei; Wang, Zhong Lin (2024-01-26). "A contact-electro-catalysis process for producing reactive oxygen species by ball milling of triboelectric materials". Nature Communications. 15 (1): 757. Bibcode:2024NatCo..15..757W. doi:10.1038/s41467-024-45041-4. ISSN 2041-1723. PMC 10810876. PMID 38272926.
  3. ^ Zhao, Jiawei; Zhang, Xiaotong; Xu, Jiajia; Tang, Wei; Lin Wang, Zhong; Ru Fan, Feng (2023). "Contact-electro-catalysis for Direct Synthesis of H2O2 under Ambient Conditions". Angewandte Chemie. 135 (21): e202300604. Bibcode:2023AngCh.135E0604Z. doi:10.1002/ange.202300604. ISSN 1521-3757.
  4. ^ Zhao, Xin; Su, Yusen; Berbille, Andy; Wang, Zhong Lin; Tang, Wei (2023-03-30). "Degradation of methyl orange by dielectric films based on contact-electro-catalysis". Nanoscale. 15 (13): 6243–6251. doi:10.1039/D2NR06783H. ISSN 2040-3372. PMID 36896686.
  5. ^ a b Li, Huifan; Berbille, Andy; Zhao, Xin; Wang, Ziming; Tang, Wei; Wang, Zhong Lin (October 2023). "A contact-electro-catalytic cathode recycling method for spent lithium-ion batteries". Nature Energy. 8 (10): 1137–1144. Bibcode:2023NatEn...8.1137L. doi:10.1038/s41560-023-01348-y. ISSN 2058-7546.
  6. ^ a b Chen, Zhixiang; Lu, Yi; Liu, Xuyang; Li, Jingqiao; Liu, Qingxia (2023-04-01). "Novel magnetic catalysts for organic pollutant degradation via contact electro-catalysis". Nano Energy. 108: 108198. Bibcode:2023NEne..10808198C. doi:10.1016/j.nanoen.2023.108198. ISSN 2211-2855.
  7. ^ Zhang, Yihe; Kang, Tian; Han, Xin; Yang, Weifeng; Gong, Wei; Li, Kerui; Guo, Yinben (2023-06-15). "Molecular-functionalized metal-organic frameworks enabling contact-electro-catalytic organic decomposition". Nano Energy. 111: 108433. Bibcode:2023NEne..11108433Z. doi:10.1016/j.nanoen.2023.108433. ISSN 2211-2855.
  8. ^ Jiang, Buwen; Xue, Xiaoxuan; Mu, Zuxiang; Zhang, Haoyuan; Li, Feng; Liu, Kai; Wang, Wenqian; Zhang, Yongfei; Li, Wenhui; Yang, Chao; Zhang, Kewei (January 2022). "Contact-Piezoelectric Bi-Catalysis of an Electrospun ZnO@PVDF Composite Membrane for Dye Decomposition". Molecules. 27 (23): 8579. doi:10.3390/molecules27238579. ISSN 1420-3049. PMC 9735836. PMID 36500670.
  9. ^ Yin, Fang; Liu, Jin-Hua; Zhang, Yang; Liu, Meng-Nan; Wang, Lu-Yao; Yu, Zi-Chen; Yang, Wen-Hua; Zhang, Jun; Long, Yun-Ze (2024). "Contact-Electro-Catalysis for Organic Pollutants Degradation Based on 2D Fluorinated Graphite". Advanced Functional Materials. 34 (41): 2406417. doi:10.1002/adfm.202406417. ISSN 1616-3028.
  10. ^ Zhao, Yi; Liu, Yang; Wang, Yuying; Li, Shulan; Liu, Yi; Wang, Zhong Lin; Jiang, Peng (2023-07-01). "The process of free radical generation in contact electrification at solid-liquid interface". Nano Energy. 112: 108464. Bibcode:2023NEne..11208464Z. doi:10.1016/j.nanoen.2023.108464. ISSN 2211-2855.
  11. ^ Shen, Xiaoyan; Wang, Shiyong; Zhao, Lin; Song, Haoran; Li, Wei; Li, Changping; Lv, Sihao; Wang, Gang (2024-07-05). "Simultaneous Cu(II)-EDTA decomplexation and Cu(II) recovery using integrated contact-electro-catalysis and capacitive deionization from electroplating wastewater". Journal of Hazardous Materials. 472: 134548. Bibcode:2024JHzM..47234548S. doi:10.1016/j.jhazmat.2024.134548. ISSN 0304-3894. PMID 38728866.
  12. ^ Cao, Da-Qi; Fang, Rong-Kun; Song, Yi-Xuan; Ma, Ming-Guo; Li, Haiyan; Hao, Xiao-Di; Wu, Rongling; Chen, Xiangyu (2024-05-01). "Contact-electro-catalysis for degradation of trace antibiotics in wastewater". Chemical Engineering Journal. 487: 150531. Bibcode:2024ChEnJ.48750531C. doi:10.1016/j.cej.2024.150531. ISSN 1385-8947.
  13. ^ Berbille, Andy; Li, Xiao-Fen; Su, Yusen; Li, Shunning; Zhao, Xin; Zhu, Laipan; Wang, Zhong Lin (2023). "Mechanism for Generating H2O2 at Water-Solid Interface by Contact-Electrification". Advanced Materials. 35 (46): 2304387. Bibcode:2023AdM....3504387B. doi:10.1002/adma.202304387. ISSN 1521-4095. PMID 37487242.
  14. ^ Wang, Yanfeng; Wei, Peiyun; Shen, Zihan; Wang, Chao; Ding, Jie; Zhang, Wenkai; Jin, Xin; Vecitis, Chad D.; Gao, Guandao (2024-01-09). "O2-Independent H2O2 Production via Water–Polymer Contact Electrification". Environmental Science & Technology. 58 (1): 925–934. Bibcode:2024EnST...58..925W. doi:10.1021/acs.est.3c07674. ISSN 0013-936X. PMID 38117535.
  15. ^ Li, Juan; Xia, Yu; Song, Xiaowei; Chen, Bolei; Zare, Richard N. (2024-01-23). "Continuous ammonia synthesis from water and nitrogen via contact electrification". Proceedings of the National Academy of Sciences. 121 (4): e2318408121. Bibcode:2024PNAS..12118408L. doi:10.1073/pnas.2318408121. PMC 10823170. PMID 38232282.