Jump to content

List of intestinal epithelial differentiation genes

From Wikipedia, the free encyclopedia

Table of genes implicated in development and differentiation of the intestinal epithelium[1]

The table listed below is a running comprehensive list of all intestinal differential genes that have been reported in the literature. The PMID is the pubmed identification number of the papers that support the summarized information in the table corresponding to each row.

Official Common Function/phenotype PMID
APC Conditional deletion promotes Paneth cell differentiation at the expense of enterocyte, goblet and enteroendocrine cell differentiation. Negative regulator of beta-catenin 15716339 [2]
ATOH1 Math1, HATH1 Commitment to secretory lineage 20691176[3] 17570220[4] 11739954 [5]
BLIMP1 PRDM1 Postnatal epithelial maturation; suckling/weaning transition 21878906 [6] 21670299 [7]
BMPR1A Involved in terminal differentiation of secretory cells 17678919 [8]
CBFA2T2 Mtgr1 Required for maintenance of secretory lineage 16227606 [9]
CDH1 E-cadherin Required for maturation/localization of Paneth and goblet cells 21179475 [10]
CDX1 Cdx1 Induced expression promoted enterocyte differentiation in IEC6 cells 19059241 [11] 10579974 [12]
CDX2 Cdx2 Involves in epithelial cell maturation as well as goblet and Paneth cell differentiation. Required for the small intestinal identity during development. In IEC-6 cells, conditional expression induced enterocyte and goblet like cells 21081128[13] 19386267[14] 8552090 [15]
CTNNB1 Catenin, beta Paneth cell differentiation. Essential for stem cell/crypt maintenance. Villus and crypt morphogenesis with Tcf3 via c-Myc 18948094[16] 17785439[17] 17681174 [18]
DLL1 Functions as a cis acting element and required for goblet cell differentiation in the Notch inactive colonic epithelia. Notch ligand in intestine. Required for the maintenance of stem and progenitors 20170633[19] 21238454 [20]
DLL4 Notch ligand in intestine. Required for the maintenance of stem and progenitors 21238454 [20]
ELF3 ESE-1 Terminal differentiation of absorptive enterocytes 19801644 [21]
EPHB3 Localization of Paneth cells to crypt base 12408869 [22]
FGF7 KGF Regulate epithelial growth and promote differentiation 19326389 [23]
FGFR3 Paneth cell specification through beta-catenin/Tcf4 dependent and independent pathway. Significant reduction in Paneth cell in knockout mice. Involved in crypt development and stem cell expansion 19407216 [24]
FOXA1 HNF3A Involved in goblet cell differentiation and enteroendocrine differentiation 19737569 [25]
FOXA2 HNF3B Involved in goblet cell differentiation and enteroendocrine differentiation 19737569 [25]
FZD5 Required for Paneth cell maturation. Loss of Paneth cell genes after conditional deletion 15778706 [26]
GADD45GIP1 Crif1 Essential Elf3 coactivator in differentiation of absorptive enterocytes 19801644 [21]
GATA6 Regulates proximal-distal identity in the intestines 21262227 [27]
GATA4 Required for proximal intestinal identity 16940177 [28] 18812176 [29]
GFI1 Required for proper allocation of secretory lineage 16230531 [30]
HES1 Hes1 Commitment to absorptive lineage 10615124 [31]
HNF1A HNF1-α Regulates terminal differentiation of enterocytes and secretory cells potentially by direct regulation of Atoh1 20133952 [32] 20388655 [33]
HNF1B HNF1-β Regulates terminal differentiation of enterocytes and secretory cells potentially by direct regulation of Atoh1 20133952 [32] 20388655 [33]
IHH Colonocytes differentiation 14770182 [34]
KLF4 GKLF Promotes goblet cell differentiation in colon 21070761[35] 12015290 [36]
LGR4 GPR48 Promotes Paneth cell differentiation and crypt cell proliferation. Along with LGR5, acts as the receptor for R-Spondin, a WNT co-ligand that amplifies WNT signaling 21508962 [37] 21909076 [38]
LGR5 GPR49 Premature paneth cell differentiation in fetal intestine. Intestinal stem cell marker. Along with LGR4, acts as the receptor for R-Spondin, a WNT co-ligand that amplifies WNT signaling 19394326 [39] 21727895 [40]
MMP9 Negatively regulates terminal differentiation of goblet cells in colon 17484881 [41]
MSI1 Suppress paneth cell differentiation independent of Notch and Wnt signaling pathways 19214660 [42]
MYBL2 Regulates commitment of colon stem cells to differentiate 20857481;[43] 20133952 [44]
MYC Crypt loss upon conditional deletion in the adult 16954380 [45]
NEUROD1 BETA2 Differentiation of Ngn3 enteroendocrine cells into CCK and secretin cells 18022152;[46] 15044355 [47]
NEUROG3 NGN3, ATOH5 Commitment to the enteroendocrine cell lineage 17706959;[48] 12456641 [49]
NKX2-2 Nkx2.2 Required for a subset of enteroendocrine cells differentiation 18022152 [46]
NOTCH1 Regulates absorptive cells vs secretory cells 15959516;[50] 18274550 [51]
NOTCH2 Regulates absorptive cells vs secretory cells 15959516;[50] 18274550 [51]
NOX1 Regulate ROS to activate Notch signaling and indirectly promote absorptive cell lineage in the colon 20351171 [52]
PAX6 Differentiation of GIP in enteroendocrine lineage 18022152;[46] 10478839 [53]
PDX1 IPF1 Overexpression causes differentiation of immature intestinal epithelia to enteroendocrine cells. Conditional deletion alters enterocyte and enteroendocrine gene expression 11408276;[54] 19808654 [55]
PPARD PPAR-δ/β Involves in Paneth cell maturation by modulating IHH expression 16890607 [56]
PTK6 BRK Promote cell cycle exit in Wnt independent pathway and promote enterocyte differentiation 16782882 [57]
RB1 pRB Required for enterocyte terminal differentiation in small intestine 18981186 [58]
RBPJ CBF1 Conversion of progenitors and differentiated cells into goblet cells by conditional deletion 15959515 [59]
REG4 Marker for enteroendocrine cells
26287467 [60]
SOX9 Required for paneth cell differentiation 17698607;[61] 17681175 [62]
SPDEF PDEF Regulates terminal differentiation of goblet cells and Paneth cells 19786015;[63] 19549527 [64]
STK11 LKB1 Required for normal differentiation of goblet and Paneth cells 19165340[65]
TGFBR2 Tgf-βRII The critical downstream target of Elf3 for enterocyte differentiation 17408644 [66]
VAV Required for enterocyte differentiation in mouse cecum and colon 19139088 [67]

References

[edit]
  1. ^ Noah, T. K.; Donahue, B.; Shroyer, N. F. (2011). "Intestinal development and differentiation". Experimental Cell Research. 317 (19): 2702–10. doi:10.1016/j.yexcr.2011.09.006. PMC 3210330. PMID 21978911.
  2. ^ Andreu, P.; Colnot, S.; Godard, C.; Gad, S.; Chafey, P.; Niwa-Kawakita, M.; Laurent-Puig, P.; Kahn, A.; Robine, S.; Perret, C.; Romagnolo, B. (2005). "Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine". Development. 132 (6): 1443–1451. doi:10.1242/dev.01700. PMID 15716339.
  3. ^ Vandussen, K. L.; Samuelson, L. C. (2010). "Mouse Atonal Homolog 1 Directs Intestinal Progenitors to Secretory Cell Rather than Absorptive Cell Fate". Developmental Biology. 346 (2): 215–223. doi:10.1016/j.ydbio.2010.07.026. PMC 2945455. PMID 20691176.
  4. ^ Shroyer, N. F.; Helmrath, M. A.; Wang, V. Y. –C.; Antalffy, B.; Henning, S. J.; Zoghbi, H. Y. (2007). "Intestine-Specific Ablation of Mouse atonal homolog 1 (Math1) Reveals a Role in Cellular Homeostasis". Gastroenterology. 132 (7): 2478–2488. doi:10.1053/j.gastro.2007.03.047. PMID 17570220.
  5. ^ Yang, Q.; Bermingham, N. A.; Finegold, M. J.; Zoghbi, H. Y. (2001). "Requirement of Math1 for Secretory Cell Lineage Commitment in the Mouse Intestine". Science. 294 (5549): 2155–2158. Bibcode:2001Sci...294.2155Y. doi:10.1126/science.1065718. PMID 11739954. S2CID 27540123.
  6. ^ Muncan, V.; Heijmans, J.; Krasinski, S. D.; Büller, N. V.; Wildenberg, M. E.; Meisner, S.; Radonjic, M.; Stapleton, K. A.; Lamers, W. H.; Biemond, I.; Van Den Bergh Weerman, M. A.; O'Carroll, D. N.; Hardwick, J. C.; Hommes, D. W.; Van Den Brink, G. R. (2011). "Blimp1 regulates the transition of neonatal to adult intestinal epithelium". Nature Communications. 2: 452–. Bibcode:2011NatCo...2..452M. doi:10.1038/ncomms1463. PMC 3167062. PMID 21878906.
  7. ^ Harper, J.; Mould, A.; Andrews, R. M.; Bikoff, E. K.; Robertson, E. J. (2011). "The transcriptional repressor Blimp1/Prdm1 regulates postnatal reprogramming of intestinal enterocytes". Proceedings of the National Academy of Sciences. 108 (26): 10585–10590. Bibcode:2011PNAS..10810585H. doi:10.1073/pnas.1105852108. PMC 3127883. PMID 21670299.
  8. ^ Auclair, B. A.; Benoit, Y. D.; Rivard, N.; Mishina, Y.; Perreault, N. (2007). "Bone Morphogenetic Protein Signaling is Essential for Terminal Differentiation of the Intestinal Secretory Cell Lineage". Gastroenterology. 133 (3): 887–896. doi:10.1053/j.gastro.2007.06.066. PMID 17678919.
  9. ^ Amann, J. M.; Chyla, B. J. I.; Ellis, T. C.; Martinez, A.; Moore, A. C.; Franklin, J. L.; McGhee, L.; Meyers, S.; Ohm, J. E.; Luce, K. S.; Ouelette, A. J.; Washington, M. K.; Thompson, M. A.; King, D.; Gautam, S.; Coffey, R. J.; Whitehead, R. H.; Hiebert, S. W. (2005). "Mtgr1 is a Transcriptional Corepressor That is Required for Maintenance of the Secretory Cell Lineage in the Small Intestine". Molecular and Cellular Biology. 25 (21): 9576–9585. doi:10.1128/MCB.25.21.9576-9585.2005. PMC 1265807. PMID 16227606.
  10. ^ Schneider, M. R.; Dahlhoff, M.; Horst, D.; Hirschi, B.; Trülzsch, K.; Müller-Höcker, J.; Vogelmann, R.; Allgäuer, M.; Gerhard, M.; Steininger, S.; Wolf, E.; Kolligs, F. T. (2010). Algül, Hana (ed.). "A Key Role for E-cadherin in Intestinal Homeostasis and Paneth Cell Maturation". PLOS ONE. 5 (12): e14325. Bibcode:2010PLoSO...514325S. doi:10.1371/journal.pone.0014325. PMC 3001873. PMID 21179475.
  11. ^ Park, M. J.; Kim, H. Y.; Kim, K.; Cheong, J. (2009). "Homeodomain transcription factor CDX1 is required for the transcriptional induction of PPARγ in intestinal cell differentiation". FEBS Letters. 583 (1): 29–35. Bibcode:2009FEBSL.583...29P. doi:10.1016/j.febslet.2008.11.030. PMID 19059241. S2CID 21705505.
  12. ^ Soubeyran, P.; André, F.; Lissitzky, J. C.; Mallo, G. V.; Moucadel, V.; Roccabianca, M.; Rechreche, H.; Marvaldi, J.; Dikic, I.; Dagorn, J. C.; Iovanna, J. L. (1999). "Cdx1 promotes differentiation in a rat intestinal epithelial cell line". Gastroenterology. 117 (6): 1326–1338. doi:10.1016/S0016-5085(99)70283-0. PMID 10579974.
  13. ^ Crissey, M. A. S.; Guo, R. J.; Funakoshi, S.; Kong, J.; Liu, J.; Lynch, J. P. (2011). "Cdx2 levels modulate intestinal epithelium maturity and Paneth cell development". Gastroenterology. 140 (2): 517–528.e8. doi:10.1053/j.gastro.2010.11.033. PMC 3031739. PMID 21081128.
  14. ^ Gao, N.; White, P.; Kaestner, K. H. (2009). "Establishment of Intestinal Identity and Epithelial-Mesenchymal Signaling by Cdx2". Developmental Cell. 16 (4): 588–599. doi:10.1016/j.devcel.2009.02.010. PMC 2673200. PMID 19386267.
  15. ^ Suh, E.; Traber, P. G. (1996). "An intestine-specific homeobox gene regulates proliferation and differentiation". Molecular and Cellular Biology. 16 (2): 619–625. doi:10.1128/mcb.16.2.619. PMC 231041. PMID 8552090.
  16. ^ Andreu, P.; Peignon, G. G.; Slomianny, C.; Taketo, M. M.; Colnot, S.; Robine, S.; Lamarque, D.; Laurent-Puig, P.; Perret, C.; Romagnolo, B. A. (2008). "A genetic study of the role of the Wnt/β-catenin signalling in Paneth cell differentiation". Developmental Biology. 324 (2): 288–296. doi:10.1016/j.ydbio.2008.09.027. PMID 18948094.
  17. ^ Fevr, T.; Robine, S.; Louvard, D.; Huelsken, J. (2007). "Wnt/β-Catenin is Essential for Intestinal Homeostasis and Maintenance of Intestinal Stem Cells". Molecular and Cellular Biology. 27 (21): 7551–7559. doi:10.1128/MCB.01034-07. PMC 2169070. PMID 17785439.
  18. ^ Kim, B. M.; Mao, J.; Taketo, M. M.; Shivdasani, R. A. (2007). "Phases of Canonical Wnt Signaling During the Development of Mouse Intestinal Epithelium". Gastroenterology. 133 (2): 529–538. doi:10.1053/j.gastro.2007.04.072. PMID 17681174.
  19. ^ Akiyama, J.; Okamoto, R.; Iwasaki, M.; Zheng, X.; Yui, S.; Tsuchiya, K.; Nakamura, T.; Watanabe, M. (2010). "Delta-like 1 expression promotes goblet cell differentiation in Notch-inactivated human colonic epithelial cells". Biochemical and Biophysical Research Communications. 393 (4): 662–667. doi:10.1016/j.bbrc.2010.02.048. PMID 20170633.
  20. ^ a b Pellegrinet, L.; Rodilla, V.; Liu, Z.; Chen, S.; Koch, U.; Espinosa, L.; Kaestner, K. H.; Kopan, R.; Lewis, J.; Radtke, F. (2011). "Dll1- and Dll4-mediated Notch signaling is required for homeostasis of intestinal stem cells". Gastroenterology. 140 (4): 1230–1240.e1–7. doi:10.1053/j.gastro.2011.01.005. PMC 3066401. PMID 21238454.
  21. ^ a b Kwon, M. -C.; Koo, B. -K.; Kim, Y. -Y.; Lee, S. -H.; Kim, N. -S.; Kim, J. -H.; Kong, Y. -Y. (2009). "Essential Role of CR6-interacting Factor 1 (Crif1) in E74-like Factor 3 (ELF3)-mediated Intestinal Development". Journal of Biological Chemistry. 284 (48): 33634–33641. doi:10.1074/jbc.M109.059840. PMC 2785205. PMID 19801644.
  22. ^ Batlle, E.; Henderson, J. T.; Beghtel, H.; Van Den Born, M. M.; Sancho, E.; Huls, G.; Meeldijk, J.; Robertson, J.; Van De Wetering, M.; Pawson, T.; Clevers, H. (2002). "Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB". Cell. 111 (2): 251–263. doi:10.1016/S0092-8674(02)01015-2. PMID 12408869.
  23. ^ Visco, V.; Bava, F. A.; d'Alessandro, F.; Cavallini, M.; Ziparo, V.; Torrisi, M. R. (2009). "Human colon fibroblasts induce differentiation and proliferation of intestinal epithelial cells through the direct paracrine action of keratinocyte growth factor". Journal of Cellular Physiology. 220 (1): 204–213. doi:10.1002/jcp.21752. PMID 19326389. S2CID 43767607.
  24. ^ Vidrich, A.; Buzan, J. M.; Brodrick, B.; Ilo, C.; Bradley, L.; Fendig, K. S.; Sturgill, T.; Cohn, S. M. (2009). "Fibroblast growth factor receptor-3 regulates Paneth cell lineage allocation and accrual of epithelial stem cells during murine intestinal development". AJP: Gastrointestinal and Liver Physiology. 297 (1): G168 – G178. doi:10.1152/ajpgi.90589.2008. PMC 2711760. PMID 19407216.
  25. ^ a b Ye, D. Z.; Kaestner, K. H. (2009). "Foxa1 and Foxa2 Control the Differentiation of Goblet and Enteroendocrine L- and D-Cells in Mice". Gastroenterology. 137 (6): 2052–2062. doi:10.1053/j.gastro.2009.08.059. PMC 2789913. PMID 19737569.
  26. ^ Van Es, J. H.; Jay, P.; Gregorieff, A.; Van Gijn, M. E.; Jonkheer, S.; Hatzis, P.; Thiele, A.; Van Den Born, M.; Begthel, H.; Brabletz, T.; Taketo, M. M.; Clevers, H. (2005). "Wnt signalling induces maturation of Paneth cells in intestinal crypts". Nature Cell Biology. 7 (4): 381–386. doi:10.1038/ncb1240. PMID 15778706. S2CID 15151752.
  27. ^ Beuling, E.; Baffour-Awuah, N. Y. A.; Stapleton, K. A.; Aronson, B. E.; Noah, T. K.; Shroyer, N. F.; Duncan, S. A.; Fleet, J. C.; Krasinski, S. D. (2011). "GATA Factors Regulate Proliferation, Differentiation, and Gene Expression in Small Intestine of Mature Mice". Gastroenterology. 140 (4): 1219–1229.e1–2. doi:10.1053/j.gastro.2011.01.033. PMC 3541694. PMID 21262227.
  28. ^ Bosse, T.; Piaseckyj, C. M.; Burghard, E.; Fialkovich, J. J.; Rajagopal, S.; Pu, W. T.; Krasinski, S. D. (2006). "Gata4 is Essential for the Maintenance of Jejunal-Ileal Identities in the Adult Mouse Small Intestine". Molecular and Cellular Biology. 26 (23): 9060–9070. doi:10.1128/MCB.00124-06. PMC 1636804. PMID 16940177.
  29. ^ Battle, M. A.; Bondow, B. J.; Iverson, M. A.; Adams, S. J.; Jandacek, R. J.; Tso, P.; Duncan, S. A. (2008). "GATA4 is essential for jejunal function in mice". Gastroenterology. 135 (5): 1676–1686.e1. doi:10.1053/j.gastro.2008.07.074. PMC 2844802. PMID 18812176.
  30. ^ Shroyer, N. F.; Wallis, D.; Venken, K. J.; Bellen, H. J.; Zoghbi, H. Y. (2005). "Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation". Genes & Development. 19 (20): 2412–2417. doi:10.1101/gad.1353905. PMC 1257395. PMID 16230531.
  31. ^ Madsen, O. D.; Pedersen, J.; Galante, E. E.; Hald, P.; Heller, J.; Ishibashi, R. S.; Kageyama, M.; Guillemot, R.; Serup, F.; Madsen, P. (2000). "Control of endodermal endocrine development by Hes-1". Nature Genetics. 24 (1): 36–44. doi:10.1038/71657. PMID 10615124. S2CID 52872659.
  32. ^ a b Benoit, Y. D.; Pare, F.; Francoeur, C.; Jean, D.; Tremblay, E.; Boudreau, F.; Escaffit, F.; Beaulieu, J. -F. (2010). "Cooperation between HNF-1α, Cdx2, and GATA-4 in initiating an enterocytic differentiation program in a normal human intestinal epithelial progenitor cell line". AJP: Gastrointestinal and Liver Physiology. 298 (4): G504 – G517. doi:10.1152/ajpgi.00265.2009. PMC 2907224. PMID 20133952.
  33. ^ a b d'Angelo, A.; Bluteau, O.; Garcia-Gonzalez, M. A.; Gresh, L.; Doyen, A.; Garbay, S.; Robine, S.; Pontoglio, M. (2010). "Hepatocyte nuclear factor 1 and control terminal differentiation and cell fate commitment in the gut epithelium". Development. 137 (9): 1573–1582. doi:10.1242/dev.044420. PMID 20388655.
  34. ^ Van Den Brink, G. R.; Bleuming, S. A.; Hardwick, J. C. H.; Schepman, B. L.; Offerhaus, G. J.; Keller, J. J.; Nielsen, C.; Gaffield, W.; Van Deventer, S. J. H.; Roberts, D. J.; Peppelenbosch, M. P. (2004). "Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation". Nature Genetics. 36 (3): 277–282. doi:10.1038/ng1304. PMID 14770182.
  35. ^ Ghaleb, A. M.; McConnell, B. B.; Kaestner, K. H.; Yang, V. W. (2011). "Altered Intestinal Epithelial Homeostasis in Mice with Intestine-Specific Deletion of the Krüppel-Like Factor 4 Gene". Developmental Biology. 349 (2): 310–320. doi:10.1016/j.ydbio.2010.11.001. PMC 3022386. PMID 21070761.
  36. ^ Katz, J. P.; Perreault, N.; Goldstein, B. G.; Lee, C. S.; Labosky, P. A.; Yang, V. W.; Kaestner, K. H. (2002). "The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon". Development. 129 (11): 2619–2628. doi:10.1242/dev.129.11.2619. PMC 2225535. PMID 12015290.
  37. ^ Mustata, RC; Van Loy, T; Lefort, A; Libert, F; Strollo, S; Vassart, G; Garcia, MI (Jun 2011). "Lgr4 is required for Paneth cell differentiation and maintenance of intestinal stem cells ex vivo". EMBO Rep. 12 (6): 558–64. doi:10.1038/embor.2011.52. PMC 3128273. PMID 21508962.
  38. ^ Glinka, A; Dolde, C; Kirsch, N; Huang, YL; Kazanskaya, O; Ingelfinger, D; Boutros, M; Cruciat, CM; Niehrs, C (2011). "LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling". EMBO Rep. 12 (10): 1055–61. doi:10.1038/embor.2011.175. PMC 3185347. PMID 21909076.
  39. ^ Garcia MI, Ghiani M, Lefort A, Libert F, Strollo S, Vassart G. LGR5 deficiency deregulates Wnt signaling and leads to precocious Paneth cell differentiation in the fetal intestine. Dev Biol. 2009 Jul 1;331(1):58-67.
  40. ^ de Lau W, Barker N, Low TY, Koo BK, Li VS, Teunissen H, Kujala P, Haegebarth A, Peters PJ, van de Wetering M, Stange DE, van Es JE, Guardavaccaro D, Schasfoort RB, Mohri Y, Nishimori K, Mohammed S, Heck AJ, Clevers H. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature. 2011 Jul 4;476(7360):293-7.
  41. ^ Garg, P; Ravi, A; Patel, NR; Roman, J; Gewirtz, AT; Merlin, D; Sitaraman, SV (May 2007). "Matrix metalloproteinase-9 regulates MUC-2 expression through its effect on goblet cell differentiation". Gastroenterology. 132 (5): 1877–89. doi:10.1053/j.gastro.2007.02.048. PMID 17484881.
  42. ^ Murayama, M; Okamoto, R; Tsuchiya, K; Akiyama, J; Nakamura, T; Sakamoto, N; Kanai, T; Watanabe, M (2009). "Musashi-1 suppresses expression of Paneth cell-specific genes in human intestinal epithelial cells". J Gastroenterol. 44 (3): 173–82. doi:10.1007/s00535-008-2284-4. PMID 19214660. S2CID 19858597.
  43. ^ Papetti, M; Augenlicht, LH (Mar 2011). "MYBL2, a link between proliferation and differentiation in maturing colon epithelial cells". J Cell Physiol. 226 (3): 785–91. doi:10.1002/jcp.22399. PMC 3012743. PMID 20857481.
  44. ^ Benoit, YD; Paré, F; Francoeur, C; Jean, D; Tremblay, E; Boudreau, F; Escaffit, F; Beaulieu, JF (2010). "Cooperation between HNF-1alpha, Cdx2, and GATA-4 in initiating an enterocytic differentiation program in a normal human intestinal epithelial progenitor cell line". Am J Physiol Gastrointest Liver Physiol. 298 (4): G504–17. doi:10.1152/ajpgi.00265.2009. PMC 2907224. PMID 20133952.
  45. ^ Muncan, V; Sansom, OJ; Tertoolen, L; Phesse, TJ; Begthel, H; Sancho, E; Cole, AM; Gregorieff, A; de Alboran, IM; Clevers, H; Clarke, AR (Nov 2006). "Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc". Mol Cell Biol. 26 (22): 8418–26. doi:10.1128/MCB.00821-06. PMC 1636776. PMID 16954380.
  46. ^ a b c Desai S, Loomis Z, Pugh-Bernard A, Schrunk J, Doyle MJ, Minic A, McCoy E, Sussel L. Nkx2.2 regulates cell fate choice in the enteroendocrine cell lineages of the intestine. Dev Biol. 2008 Jan 1;313(1):58-66.
  47. ^ Schonhoff, SE; Giel-Moloney, M; Minireview, Leiter AB. (Jun 2004). "Development and differentiation of gut endocrine cells". Endocrinology. 145 (6): 2639–44. doi:10.1210/en.2004-0051. PMID 15044355.
  48. ^ López-Díaz L, Jain RN, Keeley TM, VanDussen KL, Brunkan CS, Gumucio DL, Samuelson LC. Intestinal Neurogenin 3 directs differentiation of a bipotential secretory progenitor to endocrine cell rather than goblet cell fate. Dev Biol. 2007 Sep 15;309(2):298-305.
  49. ^ Jenny M, Uhl C, Roche C, Duluc I, Guillermin V, Guillemot F, Jensen J, Kedinger M, Gradwohl G. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J. 2002 Dec 2;21(23):6338-47.
  50. ^ a b Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature. 2005 Jun 16;435(7044):964-8.
  51. ^ a b Riccio, O; van Gijn, ME; Bezdek, AC; Pellegrinet, L; van Es, JH; Zimber-Strobl, U; Strobl, LJ; Honjo, T; Clevers, H; Radtke, F (Apr 2008). "Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2". EMBO Rep. 9 (4): 377–83. doi:10.1038/embor.2008.7. PMC 2288761. PMID 18274550.
  52. ^ Coant, N; Ben Mkaddem, S; Pedruzzi, E; Guichard, C; Tréton, X; Ducroc, R; Freund, JN; Cazals-Hatem, D; Bouhnik, Y; Woerther, PL; Skurnik, D; Grodet, A; Fay, M; Biard, D; Lesuffleur, T; Deffert, C; Moreau, R; Groyer, A; Krause, KH; Daniel, F; Ogier-Denis, E (Jun 2010). "NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon". Mol Cell Biol. 30 (11): 2636–50. doi:10.1128/mcb.01194-09. PMC 2876517. PMID 20351171.
  53. ^ Hill, ME; Asa, SL; Drucker, DJ (Sep 1999). "Essential requirement for Pax6 in control of enteroendocrine proglucagon gene transcription". Mol Endocrinol. 13 (9): 1474–86. doi:10.1210/mend.13.9.0340. PMID 10478839.
  54. ^ Yamada, S; Kojima, H; Fujimiya, M; Nakamura, T; Kashiwagi, A; Kikkawa, R (Jul 2001). "Differentiation of immature enterocytes into enteroendocrine cells by Pdx1 overexpression". Am J Physiol Gastrointest Liver Physiol. 281 (1): G229–36. doi:10.1152/ajpgi.2001.281.1.g229. PMID 11408276. S2CID 8883248.
  55. ^ Chen, C; Fang, R; Davis, C; Maravelias, C; Sibley, E (Dec 2009). "Pdx1 inactivation restricted to the intestinal epithelium in mice alters duodenal gene expression in enterocytes and enteroendocrine cells". Am J Physiol Gastrointest Liver Physiol. 297 (6): G1126–37. doi:10.1152/ajpgi.90586.2008. PMC 2850094. PMID 19808654.
  56. ^ Varnat, F; Heggeler, BB; Grisel, P; Boucard, N; Corthésy-Theulaz, I; Wahli, W; Desvergne, B (Aug 2006). "PPARbeta/delta regulates paneth cell differentiation via controlling the hedgehog signaling pathway". Gastroenterology. 131 (2): 538–53. doi:10.1053/j.gastro.2006.05.004. PMID 16890607.
  57. ^ Haegebarth, A; Bie, W; Yang, R; Crawford, SE; Vasioukhin, V; Fuchs, E; Tyner, AL (Jul 2006). "Protein tyrosine kinase 6 negatively regulates growth and promotes enterocyte differentiation in the small intestine". Mol Cell Biol. 26 (13): 4949–57. doi:10.1128/mcb.01901-05. PMC 1489160. PMID 16782882.
  58. ^ Guo J, Longshore S, Nair R, Warner BW. Retinoblastoma protein (pRb), but not p107 or p130, is required for maintenance of enterocyte quiescence and differentiation in small intestine. J Biol Chem. 2009 Jan 2;284(1):134-40.
  59. ^ van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005 Jun 16;435(7044):959-63.
  60. ^ Grün, Dominic; Lyubimova, Anna; Kester, Lennart; Wiebrands, Kay; Basak, Onur; Sasaki, Nobuo; Clevers, Hans; van Oudenaarden, Alexander (2015-09-10). "Single-cell messenger RNA sequencing reveals rare intestinal cell types". Nature. 525 (7568): 251–255. Bibcode:2015Natur.525..251G. doi:10.1038/nature14966. ISSN 1476-4687. PMID 26287467. S2CID 4453971.
  61. ^ Bastide P, Darido C, Pannequin J, Kist R, Robine S, Marty-Double C, Bibeau F, Scherer G, Joubert D, Hollande F, Blache P, Jay P. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J. Cell Biol. 2007 Aug 13;178(4):635-48.
  62. ^ Mori-Akiyama Y, van den Born M, van Es JH, Hamilton SR, Adams HP, Zhang J, Clevers H, de Crombrugghe B. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium Gastroenterology 2007 Aug;133(2):539-46.
  63. ^ Noah TK, Kazanjian A, Whitsett J, Shroyer NF. SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells. Exp Cell Res. 2010 Feb 1;316(3):452-65.
  64. ^ Gregorieff, A; Stange, DE; Kujala, P; Begthel, H; van den Born, M; Korving, J; Peters, PJ; Clevers, H (Oct 2009). "The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium". Gastroenterology. 137 (4): 1333–45.e1–3. doi:10.1053/j.gastro.2009.06.044. PMID 19549527.
  65. ^ Shorning, BY; Zabkiewicz, J; McCarthy, A; Pearson, HB; Winton, DJ; Sansom, OJ; Ashworth, A; Clarke, AR (2009). "Lkb1 deficiency alters goblet and paneth cell differentiation in the small intestine". PLOS ONE. 4 (1): e4264. Bibcode:2009PLoSO...4.4264S. doi:10.1371/journal.pone.0004264. PMC 2626247. PMID 19165340.
  66. ^ Flentjar, N; Chu, PY; Ng, AY; Johnstone, CN; Heath, JK; Ernst, M; Hertzog, PJ; Pritchard, MA (Apr 2007). "TGF-betaRII rescues development of small intestinal epithelial cells in Elf3-deficient mice". Gastroenterology. 132 (4): 1410–9. doi:10.1053/j.gastro.2007.02.054. PMID 17408644.
  67. ^ Liu JY, Seno H, Miletic AV, Mills JC, Swat W, Stappenbeck TS. Vav proteins are necessary for correct differentiation of mouse cecal and colonic enterocytes. J Cell Sci. 2009 Feb 1;122(3):324-34.