Talk:Vacuous truth
Vacuous truth is a former featured article. Please see the links under Article milestones below for its original nomination page (for older articles, check the nomination archive) and why it was removed. | |||||||||||||
| |||||||||||||
Current status: Former featured article |
This article is rated Start-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||||||||||||||||||||||||
|
Talk:Vacuous truth humor
[edit]Comments from the earlier, especially incoherent versions of Vacuous truth:
- The whole thing sounds pretty vacuous to me (see talk:surrealism). --Ed Poor
- No, this is mathematics. It's real. There's just parts of it that only make sense after the imbibing of certain quantities of alcohol... -- Tarquin
Ryguasu didn't understand if Ed Poor's comment was in jest. Ed Poor clarified:
- I confess that I was just clowning around: the surrealism article seemed so surrealistic that when I saw vacuous truth right beside it on Recent Changes, I couldn't resist. Frankly, I don't understand either article, maybe washing my brain with alcohol would help? ;-) --Ed Poor
Clarifying the vacuous truth concept
[edit]Are the two concepts of "false implies anything" and "anything is true for the empty set" really that closely related? -- Tarquin
- As for the relatedness of those concepts, Tarquin, I can say at least this much: they both have the quality that you could legitimately "legislate in several manners". That is, there is certainly a reasonable point of view from which "nothing is true for the empty set", rather than everything. This seems remarkably parallel to the point of view from which "false implies nothing". I guess I need to think some more about whether "vacuous truth" is the best name for what is in common between them.
- Then there's the standard connection between logical implication and set theory: possible world semantics. Here, A -> B is isomorphic to "the set of conceivable worlds in which A holds" is a subset of "the set of conceivable worlds in which B holds". This gives a justification for why 3>3 implies anything; the set of conceivable worlds where 3>3 is said to be the null set, and the null set is a subset of every set. Therefore, by the isomorphism, 3>3 implies anything. I'm not sure exactly how this is related, but I can't help feel that it is. --Ryguasu
- The set analogy is interesting. That certainly does put a connection between them. -- Tarquin
Historically important (??) revisions
[edit]- AxelBoldt: What an improvement in the introduction! A few more changes like that and this article might make sense. =)
- Do you object to my rewording the first sentence as "Informally, a statement is vacuously true if it is true but it doesn't really say anything"? In particular I'm wondering if replacing your "because" with my "but" is acceptable. I did this because I think the implication "x doesn't really say anything" implies "x is true" seems rather confusing.
- My sentence leaves the reader with the question "well, why should those example sentences be said to be true in the first place?". I think this is okay, because I think I'd rather leave the reader with the question, and then delve into the answer in the more formal part of the article.
- Your sentence seems to try to answer that same question right off that bat. I think this would be fine if you could deal with all the subtleties of the answer in that one sentence, but I don't think that is possible. --Ryguasu
- Yup, "but" is fine. AxelBoldt 17:08 Aug 27, 2002 (PDT)
Issues with mathematical symbols
[edit]- The character formatting is not working on my browser (Netscape 4.7). What's the problem? --John Knouse
- You can't make netscape 4.7 work with the right fonts? (What's the problem anyway? Are math symbols ignored altogether? Do they come out as little squares?) Speaking of fonts, anyone know what fonts to install to make IE 6 work right with the math symbols? As shipped, most of the math symbols are displayed as little squares. As IE is probably the most popular browser, it would be good to get the math symbols working on it. --Ryguasu
Dude! If you're still using MSIE6.x, you desperately need to get a better browser! Because it's so outdated, not only may it not recognize more current versions of HTML, but you'll be hideously susceptible to malware exploits.
You don't have to go with MSIE; other browsers are available, especially Chrome and Firefox. — Preceding unsigned comment added by TheGrandRascal (talk • contribs) 09:59, 9 May 2020 (UTC)
- @TheGrandRascal: This is a low-traffic article and does not attract a lot of attention on the talk page, so as far as I can tell it has never been archived. Often good to check how old a comment is before responding to it. The comments you are responding to are from August 2002. --Trovatore (talk) 18:32, 9 May 2020 (UTC)
Future Directions
[edit]A lot of the stuff towards the end of the article would work well in a page on material implication. That P → Q is true whenever P is false dates back to ancient Greece, when → is material implication; but it may not be true for other forms of implication. (Material implication, of course, is the implication of classical logic, what we normally use in mathematics.) One could argue that ∀ x∈{}, P(x) is vacuously true when we interpret ∀ x∈S, P(x) using material implication, but not using other forms of implication. (Unfortunately, I don't know anything about this stuff, but I'll have a lot to write all over Wikipedia when I learn it, which I intend to.)
— Toby 08:39 Sep 20, 2002 (UTC)
This is not a bad idea. I was thinking that it might be fruitful to move most of this page to a page about comparing our intuitive concepts of logical connectives and their formalized "equivalants". This isn't exactly what you're suggesting, but I imagine such an effort, combined with a historical perspective, would make everything here much richer. Do you have any particularly interesting historical references? Did the Greeks talk much about what (I suppose) you'd call non-material implication? --Ryguasu
I don't know the answers to these questions yet. I actually hope to learn a lot of this over the course of the next school year, and if so I certainly intend to write it up for Wikipedia. I don't think that a lot of mathematicians appreciate the connections of foundations to philosophy, nor the somewhat arbitrary nature of choosing classical logic and set theory (only the axiom of choice is acknowledged widely).
What I visualise is:
- Lots of articles on the basic features of logic, such as implication. Many of these already exist.
- Lots of links from articles on mathematics (and other subjects that use logic precisely) to logic articles, such as linking the first technical usage of "and". I include these links whenever I edit a math article, which I do often (that being my field).
- Articles on nonclassical approaches to logic. I'm not sure that any of these exist yet, and this is what I can't write yet but hope to be able to write soon.
- Bits towards the end of each logic article on how that article's feature fits into nonclassical logic, and the implications that this has for how we reason with it.
Your article on comparing intuition with formalism isn't in this vision directly, but it's certainly not antithetical to it. And an article of type 3 would include much of this; for example, Intuitionistic logic would explain why intuitionists and constructivists reject the law of the excluded middle. What I would really find neat, however, is a brief bit on this at the end of Logical disjunction, showing how intuitionists and constructivists differ from Aristotle on what "or" means, which goes a long way towards explaining why they reject that law. (Of course, this would not infect the beginning of the article, which should spend its time explaining that logicians' "or"s are inclusive and things like that.) — Toby 11:13 Sep 22, 2002 (UTC)
Additional comments
[edit]Is the statement in the first paragraph about even primes greater than 2 true in any sense? --rmhermen
- Yes, of course; the English phrase "even primes greater than 2" translates into the mathematical expression "The intersection of the sets (even integers), (prime numbers), and (integers greater than 2)"; that is, the empty set. The statement is then a vacuously true one of the third form. --LDC
- Ha! I knew that this list of "every form" of vacuously true statements was incomplete. The problem with LDC's reduction of this example to the 3rd form is that the statement can be made in a logical system that does not have sets (such as Peano arithmetic). Of course, we can reduce it the second form by similar tricks:
- For all x, if x is even and x is prime and x is greater than 2, then ....
- but the same is true for the 3rd form after all, yet we list it. Of course, the 3rd form is in formal language, while "even primes greater than 2" is in informal language; LDC and I have simply described two different ways to formalise it. But my point is that there are yet more possibilities for formal language. I'm going to at least add an example for typed logic (which the "even primes greater than 2" example can also be reduced to if one wishes), but the important thing is that we shouldn't insist that these are the only possibilities. The imaginations of logicians are endless. — Toby 08:27 Sep 28, 2002 (UTC)
- Ha! I knew that this list of "every form" of vacuously true statements was incomplete. The problem with LDC's reduction of this example to the 3rd form is that the statement can be made in a logical system that does not have sets (such as Peano arithmetic). Of course, we can reduce it the second form by similar tricks:
- Do any of AxelBoldt's new additions clarify anything? If not, perhaps some further examples or restructuring are in order. --Ryguasu
Who thinks that the empty set case is in some sense the most basic? Most logics have no notion of set in the first place, yet any classical logic has vacuous truth! (Ironically, this may be based on something that I did months ago, but redirecting Vacuous truth to Empty set on the grounds that the empty set version of vacuous truth was discussed there. That was when I was unskilled with redirects; I never should have done that.) — Toby 08:33 Sep 28, 2002 (UTC)
I made the empty set example follow the same form as the others. That is, we never put in a contradiction for P, but instead an arbitrary statement that happened to be false. Similarly, we needn't put in the symbol {} for (what I have called) A, since we can use an arbitrary set that happens to be empty. That change, I just noticed, makes the only reason given for the primacy of the empty set example vanish; I'll remove that reason so as not to make the alleged supporters of that position look silly ^_^. But I'd still like to know if any actually exist, or if this was simply a misinterpretation of my poor redirecting skills. — Toby 10:28 Sep 28, 2002 (UTC)
I admit it - I put in the idea that some view the "empty set version" as more canonical in order to appease the authors of the empty set page. I never had any particularly good reasons for believing it myself. --Ryguasu
Since it was just based on a misunderstanding of me, I'll remove it. — Toby 09:59 Sep 29, 2002 (UTC)
Vacuous truth is not limited to two-valued logics; only some of the arguments in favour of it (the ones that say "Well, it can hardly be false!") are so limited. In particular, intuitionistic logic has the same concept of vacuous truth. — Toby 08:35 Sep 28, 2002 (UTC)
I changed "two big questions" to "one big question", since there didn't seem to be any attempt to answer the 2nd. Indeed, the 2nd is largely discussed prior to the listing of the questions, while this part of the article is identified by the header as being about the 1st. (I suppose that this was the result of a rearrangement of the article.) — Toby 10:28 Sep 28, 2002 (UTC)
The New York argument and its cousin seem quite tenuous to me. For the case of the commutative law (called "symmetric" in the article), this problem disappears if you assume that F → T = T, even if you still pick F → F = F.The other example didn't even make sense as written, since both statement simply said that I'm sane (given that 3 indeed equals 3). I put a new example in there.
But both of these appeals to inuition have more problems than just disbelieving that F → p = T. For example, the New York argument works on the assumption that people want to reject "If I'm in New York State, then I'm in New York City". Yet that is precisely what we want the vast majority of humanity (residents of Buffalo being a principal exception) to accept! I myself am in California, so this statement is as true its converse. To avoid taking advantage of false assumptions (thereby reinforcing them), we need to focus on a specific person, such as one of the aforementiond residents of Buffalo. But when we do that, now people will start to doubt that "If I'm in New York City, then I'm in New York State" is really true, since it's only vacuously true for the Buffaloan.
The real way to deal with the statement is to use universal quantification to rephrase it as "For any person x, if x is in New York City, then x is in New York State". (Arguably, this is what the original phrasing about "being in New York city" was supposed to mean.) But now we're no longer dealing with any of the forms of vacuous truth discussed in the article. (Alternatively, we could keep my "I" and quantify over possible worlds, or speak of future probabilities, but that doesn't fit the templates any better.) My new mathematical example succumbs even more obviously to a missing quantifier, and I suspect that any mathematical example would do so, since it's hard for mathematics to avoid being precise.
I would get rid of these entirely; they're fairly obscure arguments anyway (you did what with a truth table, thinks the reader?). — Toby 10:28 Sep 28, 2002 (UTC)
- "Vacuously true" is also sometimes also used as a synonym for tautological. This article, however, attempts a more technical analysis of a more limited concept of vacuous truth.
In what sense is the concept of vacuously true discussed in this article "more limited" than the concept of tautological? Is the idea that all vacuously true statements are tautological? If so, could someone please flesh out the concept of tautological? If not, saying the one is a subset of the other seems almost misleading. --Ryguasu
You're right; I'll fix this. — Toby 09:59 Sep 29, 2002 (UTC)
While we're on the subject, who uses "vacuously true" as a synonym for "tautological". (The external reference mentions the possibility of such use, but even the person that mentions it there disparages it.) For example, I would call F → p vacuously true, and tautological if F is a contradiction (or more generally an explosive statement in Brazilian logic); but I'd call p → T trivially true instead, and tautological if T is a tautology. Thus, the notion of vacuous truth is quite independent of the notion of tautology; as you were quite right to point out above, neither is stronger or weaker than the other. And I would regard somebody that said that "If the sky is blue, then if the grass is green, then the grass is green" vacuously true as simply mistaken. — Toby 10:10 Sep 29, 2002 (UTC)
I vote for the removal of the usage of tautological==vacuous. There may be some people who use the word in this sense, but they are probably confused. No need to reinforce or justify this mistake. AxelBoldt 00:08 Sep 30, 2002 (UTC)
I hope nobody is hurt by my removing the whole "New York" and "crazy" discussion. I don't think it can convince anybody. AxelBoldt 00:25 Sep 30, 2002 (UTC)
I don't get the first two examples - in fact, I intuitively say the statements are false. "All elephants inside loaves of bread are pink" - why? If you said "...have ears", that would be true because all elephants - loaf-inhabiting or not - have ears. "All even primes >2 are multiples of 3" cannot be true because 3 itself does not satisfy the even requirement and any greater multiple of 3 does not satisfy the prime requirement. If I theoretically had an even prime >2 (not a multiple of two, an even number - I don't know how) it could not be divisible by 3.
I could say, however, "All non-exponential functions that are their own integrals are also their own second derivatives" because that can be proven for any function f(x) - exponential or not. Here it is of no consequence that only e^x, an exponential function, is its own integral. The examples given cannot be proven true and have no basis for truth. Or, say, "Many of the registered users on the Pig Latin Wikipedia are hopeless Wikipediholics" can be assumed true because, despite there being no Pig Latin 'pedia, many users of other language Wikipedias (myself included) are hopeless Wikipediholics. But the two statements given are only absurd, as far as I can tell. --Geoffrey 01:04 24 Jun 2003 (UTC)
- That's the point, really. You can't have such a prime such as the one descibred in the article - that's what makes the truth vacuous. Show me an elephant in a loaf of bread that isn't pink. Show me an even prime >2 not divisible by 3. You can't, because such things don't exist. The statements are thus true, but vacuously true (as the article says). --Camembert
I removed the paragraph on the contrapositive. It tried to prove the truth of vacuous truths using the following argument
- If P is false, then for any Q
is also true, apparently using the fact that an implication is automatically true if its conclusion is true. Some vacuous truths have a true conclusion however, so we use what we want to prove in the proof. Furthermore, the equivalence of every implication with its contrapositive is arguably much harder to justify than the truth of vacuous truths. AxelBoldt 13:20, 24 Nov 2003 (UTC)
Stuff like this "All elephants inside a loaf of bread are pink" and the prime number example seem as much vacuously false as vacuously true. Are these really valid examples?168... 19:05, 6 Feb 2004 (UTC)
Picture
[edit]This is a Featured Article that doesn't have a picture. This would stop it appearing as a Main Page feature, for example. Is there a useful picture possible? A Venn diagram or similar? - David Gerard 23:25, 8 Jul 2004 (UTC)
- Hate to nix it, but a Venn diagram would communicate precisely the wrong thing. How about a larger form of that "P with a double arrow going to Q"? [[User:Meelar|Meelar (talk)]] 23:29, 8 Jul 2004 (UTC)
- Anything that'd be informative and helpful in explaining the concept but would nevertheless look good on the main page ;-) - David Gerard 23:31, 8 Jul 2004 (UTC)
- A pink unicorn, perhaps? With text in front that says if X is a unicorn, then X is pink? —Preceding unsigned comment added by Mike40033 (talk • contribs) 06:04, 23 April 2008 (UTC)
FA removal candidate
[edit]See Wikipedia:Featured article removal candidates. --mav 21:40, 4 Sep 2004 (UTC)
What do we call a true implication with a tautological consequence?
[edit]What do we call true implications of the type P -> Q, where Q is a tautology? Something like if I go to school today, then 2 + 2 = 4. -- Sundar 09:28, Sep 30, 2004 (UTC)
- It's called trivially true.
Thanks, 67.171.229.101. Wondering, how I missed that! -- Sundar 07:04, Jan 6, 2005 (UTC)
Boston example is flawed
[edit]From the article: Consider the implication "if I am in Boston, then I am in Massachusetts." [...] There is something inherently reasonable about this claim, even if one is not currently in Boston. [...] Thus at least one vacuously true statement seems to actually be true.
The only problem is that there are a number of people in Britain who are managing, without any great effort, to be in Boston without being in Massachusetts.
Might I therefore suggest that the example of an "actually true" vacuous statement be changed, and the first step, in selecting a better one, should be to check whether it is in fact actually true?
- But I think the context makes it clear that one particular city called Boston was intended. (Besides, that's not the only problem, since besides the Boston in England (the original Boston) and the one in Massachusetts, there are, after all, various other Bostons.) Michael Hardy 02:09, 19 Mar 2005 (UTC)
Yes, the context denotes that the Boston mentioned is Boston, Massachusetts. But since we are tackling weighty logical arguments here, I think the knowledge of other locations named "Boston" is a distraction that weakens the example.
True Story: I was once travelling from a location in Rhode Island to a party in the town of Scituate, Massachusetts. After getting directions from a friend, driving, and confirming that I had arrived in Scituate, I made the logical assumption that "the party is in Scituate, I am in Scituate, the party is in this town." Thirty minutes later I learned that I was in Scituate, Rhode Island.
In the spirit of that memory, I changed Boston/Massachusetts/Seattle to Massachusetts/North America/Europe to lessen ambiguity. I hope it meets approval. -- House of Scandal 14:57, 22 October 2006 (UTC)
Speaking of distractions from the main (not Maine) point: yes! this example is tiresome and distracting. (Regrettably I just spent some time addressing it below on this Talk page — let me fix that here. ;-) RATHER than futzing around with taxonomy, referent, definition(s) of 'Boston', or even the entire example (look, 'Boston' is not the point, nor are context, implicit knowledge, culture, etc. — the point is that the referent of 'Boston' is "in" Massachusetts, dammit!, and everybody knows exactly what was meant by it) — let's change the example. I'm going to use "Salt Lake City", and "Utah". I'm not aware of any other referents of either which could possibly be conflated by a reasonable person. (Frankly, the whole 'ooooh, there's a Boston in England' was a little ... let's be polite and say 'fussy' ... anyhow.) One other point: making the link to the particular city entry to Boston on WP should've taken care of it. If not, we could use VIAFs. And then if need be cite that ... and down the rabbit hole we go. Which is why P → Q avoids this whole thing, and people should not get fussy about the human-convenient use of examples! — Preceding unsigned comment added by A Doon (talk • contribs) 18:59, 18 November 2013 (UTC)
- I think much of the confusion can be avoided by realizing that in formal/symbolic logic the term "true" means "valid". So an argument with false premise(s) and conclusion(s) is valid but not sound (true premises and conclusions). Moreover, let's take the Boston example (without the fallacy of language, by knowing we mean Boston, Massachusetts) in a new direction: Say you live in California. So: If you live in Boston, you live in New York. It's valid, because you cannot deal with rules outside of reality, so you cannot verify (perhaps related to Aristotle's future contingents). So when someone says, "Well that argument cannot be valid because if one lived in Boston, one would live in Massachusetts," the problem is that the premise has been switched from False to True, thus the argument becomes invalid T->F is false. That's because when one assumes a certain premise, one isn't interested in looking at it from the point of view of it being false, which serves no purpose. So there are two subtleties at work here: the definition of true/false in logic versus semantics and the subtle switch of the validity/truth value of the premises from false to true. This could perhaps clarify some things, though I'm sure I wrote it in the most confusing manner possible. Cornelius (talk) 10:28, 1 January 2016 (UTC)
useful in a variety of mathematical fields
[edit]"the fact that the result of multiplying no numbers at all is 1 -- which is useful in a variety of mathematical fields"
The only utility I can think of is that it saves us the bother of writing "except zero" repeatedly in our proofs.24.64.166.191 04:06, 6 Jun 2005 (UTC)
The "Intuition from Mathematical Arguments" section seems flawed. It says that the statement "For all integers x, if x is even, then x + 2 is even." is true, therefore the related vacuous statement "if 3 is even, then 3+2 is even" should be true too. Intuitively, I agree that the latter statement is true.
However, I can make up another statement: "For all integers x, if x is even, then x=4". Clearly, this is false. But once again, the statement "if 3 is even, then 3=4" is vacuous, but I would argue that it is intuitively false, and therefore this isn't a good reason to define vacuous statements as being true. Perhaps an example using empty sets would be better? Honestly, I am not convinced 'intuition' should enter into it at all. Kjsharke (talk) 20:24, 22 July 2010 (UTC)
Kjsharke: The main idea of that section is that it's clear what truth or falsity means for sentences of the form "whenever P(x) is true, Q(x) is true" even if it is a priori unclear for sentences of the form "if P is true, Q is true". [In mathematical notation, the complicated sentence "forall(x)(P(x) implies Q(x)" has clear meaning but the simpler sentence "if P then Q" is a priori ambiguous.] In the example you cited, "for all integers x, if x is even then x + 2 is even" is unambiguously true. So we should define "if 3 is even then 3+2 is even" to be true because it is a special case of, and thus a logical consequence of, a true sentence. In your proposed counterexample, "it is false that (if 3 is even then 3=4)" is not a logical consequence of any unambiguously true statement. Perhaps a better writer than I can explain this in the article. — Preceding unsigned comment added by 24.141.106.132 (talk) 21:37, 28 April 2012 (UTC)
You might also like Timothy Gowers' take on this kind of thing. He argues that the reason why vacuously true statements seem difficult to swallow is that in non-mathematical English, the construction "if X then Y" typically implies causation. Therefore, when X is false, we tend to intuitively leap to thinking of the statement as a counterfactual. Double sharp (talk) 21:25, 24 October 2021 (UTC)
Examples
[edit]By the definition given ("a logical statement is vacuously true if it is true but doesn't say anything"), some of the examples appear flawed.
The Boston example: "If I were in Boston, then I would be in Massachusetts" is an implicit statement of "Boston is a city in Massachusetts." or "Residents of Boston are a sub-set of residents of Massachusetts." Simply because this fact is reasonably well known does not suggest in any way that the statement tells one nothing. If that were so, then any true statement of any sort would be vacuously true if one happened to already be familiar with the content of the message.
- Unlike your elephant statement, I agree completely with this and, unless someone says otherwise, this should be deleted. --67.172.99.160 20:01, 13 August 2005 (UTC)
Another type of example, the elephant in the loaf type, calls into question whether any such statement is in fact true.
The elephant example (and similarly constructed examples): "All elephants inside a loaf of bread are pink." Examples of this type rely upon the assumption that arbitrary characteristics may be meaningfully assigned to objects which do not (or cannot exist). This appears to be a type of fallacy, or paradox, in that it is inherently meaningless to assign definite properties to things which cannot by definition exist. It is arguable that an argument based upon an ontologically meaningless statement is neither true, nor false, but simply a construct of words with the superficial appearance of sense.
- This can be restated as "If an elephant x is inside a loaf of bread, then elephant x is pink." We know that it is true that "If an elephant x is not pink, then elephant x is not inside a loaf of bread." We can assert that this new statement is perfectly valid. Also we can assert that "(x => y) <=> (!y => !x)", or, in other words, if x implies y, then not-y implies not-x. Our new elephant statement (let's call it y) along with the negation thing (we'll call it z) proves the old elephant statement, therefore to deny the old elephant statement is to deny either these logical postulates or the fact that all non-pink elephants are outside all loaves of bread.
- Put simply: the statement "All non-pink elephants are outside all loaves of bread" can be restated as "All elephants inside a loaf of bread are pink." Is something wrong with that?
- You are a genius and you will have a place in the halls of Valhalla. I don't know how you got your argument (x->y) <-> (!y->!x), but I think I found another way. I'm hoping I'm not mistaken. (!x means the negation of statement x which is the same as ~x). x is "Elephant x is inside a loaf of bread", and y is "Elephant x is pink." Therefore, the question is, is the statement x->y true? We know, as you said, that ~y->~x is true (we can easily prove this. We state the obvious: 1. Elephant X is not inside a loaf of bread (~x). 2. "~x" is the same as "~x or y" (~x ∨ y). 3. (~x ∨ y) is the same as "y or ~x" (y ∨ ~x). 4. by the laws of equivalence (y ∨ ~x) is the same as ~y->~x).
- 1. Since we know that (~y->~x) is true, by the laws of equivalence, (~~y ∨ ~x) is true.
- 2. ~~y is the same as y, so (y ∨ ~x) is true.
- 3. (y ∨ ~x) is the same as (~x ∨ y).
- 4. (~x ∨ y) is the same as (~~x->y) by the laws of equivalence.
- 5. ~~x is the same as x, therefore (x->y) is true.
- Much simpler, faster way: 1. we know "~x" is true (Elephant X is not inside a loaf). 2. Thus (~x or y) is true (Either Elephant X is not inside a loaf or Elephant X is pink). 3. (x->y) by the law of equivalence [p->q = ~p or q].
- Let's test this! We know that y->x is false, because one can make a pink elephant by painting it, but one cannot fit an elephant in a loaf (by definition an impossibility). By definition, "x" is false (F). By definition, "y" is true (T) - we have presumed the existence of a pink elephant. T->F is false.
- Let's prove this with our equivalences above. Knowing that "x" is false and "y" is true, the statement (~y ∨ x) is (F ∨ F) false [(~y ∨ x)=(~~y->x)=(y->x)]. Another way: "x" is false, thus "~x" is true. "y" is true, therefore "~y" is false. Thus ~x->~y is a T->F statement, thus false. (~x->~y)=(~~x ∨ ~y)=(x ∨ ~y)=(~y ∨ x)=(~~y->x)=(y->x).
- Finally, to prove the vacuous truth, we need to prove that (x->y) is true whether "y" is true or false. This is simple enough, because we already know that "x" is false, therefore "y" can be T/F since both F->F and F->T are valid. Moreover, (x->~y) is true, since "x" is false. The statement [x->(y ∧ ~y)] is also valid, even though (y ∧ ~y) is false.
- Implications (in philosophy) I see for this. Replace "x" with "impossible/illogical/untrue" and "y" with "possible/logical/true" (in which case "x" is the same as "~y"). x->y means that "If something impossible occurs, then something impossible and possible occurs (or results?)." [(x->y) is true, because "x"="~y", so (~y->y)=(~~y ∨ y)=(y ∨ y) and since we know "y" is true, (x->y) is true, or else if "y" is false, then "x" is true, which would make x->y false: "if something possible occurred, something impossible occurred."] Since something that is impossible and possible cannot occur [(y ∧ ~y) being false], then something impossible cannot occur (since "x" must be F, or else T->F is false). From this, I could draw the (perhaps unwarranted) conclusion, that impossibility does not exist, and therefore there is an omnipotent force that exists by definition and natural (logical) law since anything for this force (or cumulative effect of forces - e.g. gravity, strong force, weak force, electromagnetism (string theory related?)) is possible, as impossibility does not exist (not simply by definition(?)). I am by no means implying or necessitating that this omnipotent force(s) be God/gods, but I think this is related to an argument by Geoffrey Berg in his "The Six Ways of Atheism," where he tries to refute the logical possibility of the existence of omnipotence.
- There are a few more implications of this, imo: 1. logic is an immutable relationship to whatever power (and its subordinate powers/objects) exists. An example of this would be, if we assume the existence of God, the question "Can God create a rock so heavy not even He can lift?" is nonsense/irrelevant, or true/false at the same time like a vacuous truth (basically asking "Can God destroy Himself?"). 2. The rules of "illogic" are "guided" by logic (and thus cannot exist). For example if we say that an object/power "A" both exists and doesn't exist (or whatever), then (A ∧ ~A) is true, and (A ∨ ~A) is false, as is the case with the vacuous truth. This means that ~A->~A is false, as well as A->A (we can't change that to true because of "illogic" since illogic works only with respect to A (I think)). This means that both "A" and "~A" are false, contradicting our starting point that (A ∧ ~A) is true, requiring both to be true. This I think contradicts the vacuous truth we've established since this means that "Elephant X being pink" would be both true and false (whereas the vacuous truth means Elephant X is both pink and not pink"). In general, illogic cannot exist, even from its own point of view, and the whole point of the vacuous truth is to show that a "what if scenario" doesn't exist, as counter-intuitive as it might seem to our bias, since we unconsciously presumed the Elephant to exist within the loaf of bread in the first place. Cornelius (talk) 13:37, 1 January 2016 (UTC)
- An interesting addition I considered: the above proves the whole statement, "If an elephant is inside a loaf of bread, then it's pink," to be valid. But can we prove that the conclusion "it's pink" is both true and false as the article states? The article mentions that one of De Morgan's Laws proves it (it should be mentioned which and how perhaps?), but I thought of the following: since there are no elephants inside any loaves of bread, then clearly they can't be pink. So the statement would be false (F). But clearly they can't be anything else, so its inverse, "not pink" is also false (F). Under this condition, both A and ~A are false. This makes the logical argument "A or ~A" to be false. Using the equivalency laws, "A or ~A" = "~A->~A" as well as "A->A" (because "A or ~A" = "~A or A"). Those two statements must also be false. But the only way an if-then statement is false is if it's T->F; meaning ~A and A are both T and F. Is this correct? 2602:306:CD96:CC10:F010:96A4:5969:C5BE (talk) 07:55, 6 January 2016 (UTC)
[New author/comment break here (was hard to tell due to unsigned post(s) above and I'd rather take explicit blame (or credit) for what I say)]
A) "All unsigned Talk edits are suspect." (Or at least, a bit harder to parse who-said-what, esp. with a response that may or may not be in medias res of one author, or two....) >;-)
B) The Boston example opens an entire can of worms probably not relevant, or at least essential, here -- on a Talk page especially (ok, just go put in Massachusetts — on the actual page — don't delete it, at least not just for that. If the statement can be tweaked to serve the point, tweak it; if not, fix (or if that's not possible, then delete) the section). More generally, would you also need to put in '...U.S.A., Earth, Milky Way...' etc.? If not, why not? Where's the demarcation point on the spectrum of 'implicit knowledge'? Maybe that's a bit fussy/anal — but that's getting kind of 'meta'. >;-)
C) Yes, [anonymous], there is at least one thing wrong with this — starting with the "implicit statement" example of Boston (...is a city in Mass. ... and USA, Earth, Milky Way, etc. if one want's to get ana...err, 'rigorous'.) -- NOT being carried forward to the elephant-in-the-loaf-of-bread thing. Again, being rigorous: one could bake a really big loaf of bread. (For that matter, one could paint an elephant pink, but now we're mixing antecedent and consequent w.r.t. that example.) So discussing 'objects which do not (or cannot) exist' is at least on-the-face-of-it irrelevant — but it goes deeper than that.
Frankly, the whole example is a bit unwieldy (not surprisingly for elephants, painted or not, and possibly freakishly large loaves of bread. ;-) And all the talk about 'ontologically meaningless', implicit knowledge, 'objects which, etc. -- is getting down into the weeds of the projection into the 'real world' of the example statements' content and our experiential interpretation, assumptions, cultural knowledge, etc. In a world of tiny pink elephants, or just in talking to an Eskimo ... we'd get into subjective experience vs. formalism. We need to be able to replace tokens like pink, elephant, and loaf-of-bread with things that have definite formal relationships and (possible and/or definite) characteristics, before we can talk about true/false (in the propositional logic sense), let alone vacuous, meaningful, etc.
You could restate your point(s), though, e.g.: "if [thing x is in an impossible state], then [thing x, or y, is in an (unrelated/non-sequitur) impossible state]. Or, better: you could start out with "there are no pink elephants", and "an elephant cannot fit inside a loaf of bread" and get on with it. Similarly, we can say "Boston is in the state of Massachusetts." (While we're at it: get rid of the conflation of 'in' vs. 'resident-of' >;-) -- and probably not drag in set theory ('...sub-set (sic) of...') here thus massively expanding the domain-space of this entry.)
This is quite possibly why mathematicians/logicians tend to mind their Ps and Qs. Or at least just state assumptions up front when talking about elephants and pinkness and bread loaves and qualia thereof. It's particularly interesting that you kind of do both of these -- implicitly w.r.t. 'ontologically meaningless', and defining objects' possibility of existence, and then x's and y's...! So - again, why not just fix the statements? 'Cause you kind of did...here....
(Yes, logical question: "ok, smarty-pants, after all that, why don't you just fix it?" Good question. Answer: honestly (and I mean it - this is not a duck-out), it's not my field, and I'm not at all confident that my "fix" would be solid, either. To use the old quote: "one doesn't have to actually be able to make a souffle' correctly to know that one's fallen...".) A Doon (talk) 18:31, 18 November 2013 (UTC)
How to prove all vacuous truths at the same time
[edit]The "ultimate vacuous truths" are as follows:
- Suppose that x is the set of all falsehoods. If any member of x is true, then all members of x are true.
- Suppose that x is the set of all falsehoods and y is the set of all truths. If any member of x is true, then all members of y are true.
Any vacuous truth is an example of one of these, therefore proving both results in the proof of all vacuous truths.
Now let's prove the first vacuous truth. By the Law of Contrapositives:
- If following is true:
- Suppose that x is the set of all falsehoods. If not all members of x are true, then no members of x are true.
- Then if any member of x is true, all members of x are true.
The "inner statement" is trivial to prove, therefore the Law of Contrapositives states that the first ultimate vacuous truth is true.
The second statement is also trivial to prove.
Boom, we have used a simple mathematical law to prove half of all the vacuous truths seconds after the other half. Any counters? --Ihope127 02:27, 15 August 2005 (UTC)
- Yes, this is hardly complete. The vacuous truth "every infinite subset of the set {1,2,3} has seven elements", as mentioned in the article, doesn't seem to be an instance of either of the molds for vacuous truth you give. It's unclear "vacuous truth" even admits a single obvious definition. The trick is not "proving" that vacuous truths are true. They are true by definition. The question is, by definition of what. This is a point the article addresses.
- Your proof is in fact distinctly unsatisfying. We can easily restate it without those sets, by simply rendering "x is a member of the set of all falsehoods" by "x is a falsehood" and "x is a member of the set of all truths" by "x is a truth". Then your "proof" goes as follows:
- A vacuous truth is an example of either of the following statements:
- If any falsehood is true, then all falsehoods are true.
- If any falsehood is true, then all truths are true.
- Proof: If some falsehoods are not true, then no falsehood is true. Trivial. By contrapositive, this is #1. #2 is trivial. QED.
- A vacuous truth is an example of either of the following statements:
- The distinct and obvious problem I have with this is that you leave out all the interesting bits. What is an "example", in this case? What happens at "trivial"? What axioms are you appealing to? This is not much better than stating "vacuous truths are true". Absolute and rigorous precision is not a luxury in this case, or it's completely unclear what you've proven in the first place. JRM · Talk 17:49, 3 January 2006 (UTC)
means that if P is true, then Q should be true. If P is false, there are no restrictions to what Q is. So 'false implies anything' is true, because the implication doesn't say anything about what Q should be. Ok, this is informal talk. With deductive reasoning, together with it's assumptions about implication, disjunction, reductio ad absurdum and negation, you can proove that is equivalent with , or in words: (P implies Q) is equivalent with (Q or not P). This equivalence implies all vacuous thruths. Be aware, this implication does not hold in intuitionistic logic, which makes sense because vacuous thruths are not constructive at all. --Leoremy 15:07, 3 January 2007 (UTC)
Folklore
[edit]There's a piece of mathematical folklore that concerns a topology journal that published a series of papers from various authors about properties of spaces of type X. One of the papers proved that all spaces of type X had property A. A subsequent paper proved that all spaces of type X had property ¬A.
Is this true? Is it worth mentioning or discussing in this article?
-- Dominus 17:29, 3 January 2006 (UTC)
- Depends. Was it conclusively established that there were no spaces of type X, either in another proof or by verifying that both proofs were correct and type X therefore had to be empty lest a contradiction occurred? If so, then both papers technically proved vacuous truths, and I'd say that's relevant.
- (Whether it's true at all, I don't know.) JRM · Talk 17:53, 3 January 2006 (UTC)
- Possibly related to Skolem's Paradox? Maybe also the Copenhagen interpretation of QM (i.e. Schrondinger's Cat)? Cornelius (talk) 23:06, 28 October 2016 (UTC)
- It is an old story! Double sharp (talk) 04:15, 3 November 2016 (UTC)
- That link is to a post on my blog. My question above predates the post. —Mark Dominus (talk) 01:03, 8 April 2017 (UTC)
- As I recall, from hearing about it back in the 1980s, it was about anti-metric spaces. (Having looked at your link, it may be a different story entirely.) In such a space, the distance from A to C is always greater than or equal to AB plus BC. Lots of interesting results can be proved about them, all of which turn out to be trivial, since it can be shown quite easily that an anti-metric space can contain at most a single point. The first mention I found when Googling it just now doesn't claim that any journal published anything on the topic though. Well, if anyone feels like creating the anti-metric space article, I'll leave further research to them. 79.73.144.18 (talk) 00:42, 8 April 2017 (UTC)
- Well, that's not quite vacuity, although it's degeneracy of some kind. There is another similar story about a dissertation concerning α-Hölder functions with α > 1. Double sharp (talk) 21:17, 24 October 2021 (UTC)
- It is an old story! Double sharp (talk) 04:15, 3 November 2016 (UTC)
- Possibly related to Skolem's Paradox? Maybe also the Copenhagen interpretation of QM (i.e. Schrondinger's Cat)? Cornelius (talk) 23:06, 28 October 2016 (UTC)
Usefulness?
[edit]Would it be worth including a separate section that explains why the vacuous truth is actually a useful concept and not just something to make the truth tables work out? (I realise some of it is mentioned throughout the article, but an explicit explanation might be good too.) Something along the lines of:
While it may seem counterproductive to bother about proving cases that don't actually exist, the use of a vacuous truth is helpful in proofs that seek to prove a property for a large range of cases, including the vacuous one. For example, proving a property of the empty set may be a much simpler proof than that for a nonempty one, and this can be used to start an induction to prove the property for a class of sets.
And if anyone can give a good example of such a proof it would be nice to see in there too. Confusing Manifestation 18:30, 29 January 2006 (UTC)
- Actually, the advantage you state really is just something to make the truth tables work out, though the importance of this should not be underestimated. You can, after all, always start an induction argument "one step later", so to speak. Of course this will be much less convenient than a proof over the empty set, but mathematically it doesn't matter much.
- Compare the fundamental theorem of arithmetic. Our definition is "Every positive integer greater than 1 is either a prime number or can be written as a product of prime numbers. Furthermore this factorization is unique except for the order." This definition not only implicitly denies the empty product, but even the unitary product! It can be stated much more succinctly as "every positive integer is the product of a unique multiset of primes".
- For proofs, a vacuous truth of the kind you describe is nothing more or less than accepting that universal quantification over an empty domain is true, that is, true is the identity element of conjunction. However, boolean algebra is usually not well-regarded as a foundation for logic, at least not philosophically, which is what makes vacuous truths tricky. 81.58.51.131 09:32, 3 February 2006 (UTC)
The Rota quote inserted in the introduction is misplaced. It should be in some other part of the article. And the language of it should be changed too.
Rintrah 14:02, 6 February 2006 (UTC)
Vacuously true statements in real life
[edit]I added a sentence about how vacuously true statements can be used to mislead people. I feel that should be expanded on, and include quotes from famous movies (I would have included one but I couldn't think of any!). The reason is that these statements are very important when speaking, especially in situations such as giving testamony. 163.192.21.43 18:57, 21 July 2006 (UTC)
Veracity of section "Arguments of the semantic "truth" of vacuously true logical statements"
[edit]Parts of this section, including the overall conclusion, state that a vacuously true statement (e.g. P → Q assuming that P and Q are false) is not necessarily true. However, "P → Q" in standard logic is by definition true if P is false.
Premises:
~P
~Q
~(P → Q)
But P is false and Q is false, so ~(P → Q) is ~(false → false), i.e. false. ~~(false → false) must therefore hold.
Thus, if vacuously true statements are assumed to be false, it can be deduced (P → Q) & ~(P → Q). Contradiction.
Pcu123456789 03:37, 26 October 2006 (UTC)
- The distinction here is between statements that are logically true and those that are semantically true. If logic is correct, then logical truth and semantic truth will be identical. But the whole point of this section is to claim that logical truth may not be a good model for semantic truth, and to present counterexamples of places where logcially true statements may not be judged to be semantically true. Your argument that "P → Q in standard logic is by definition true if P is false" is therefore begging the question; nobody disputed that this was true in the logical sense.
- Since it appears that you missed the point of that section of the article, I'm going to remove the "disputed" tag you added. -- Dominus 16:44, 26 October 2006 (UTC)
recent (April) expansion to analytic truth in general
[edit]I hadn't looked at this article in quite some time. I just looked at it today, and the concept now described (apparently it was changed back in April) now does not agree at all with the concept that I am used to hearing described as vacuous truth. The current article now seems to be talking about what I would describe as logically necessary truth or analytic truth. I think we should go back to the version about conditionals with false antecedents and statements universally quantified over the empty set. If there are sources that describe all analytic truths as "vacuous", then we could mention that as a minority usage, but this is not the best article to discuss that concept--it should go at analytic truth. --Trovatore (talk) 18:56, 21 June 2008 (UTC)
- I checked the Cambridge dictionary (my copy of the Oxford is in storage). Much to my own surprise and chagrin, the new material is verified by the entry there. I suppose there isn't much to do unless more sources can be found. siℓℓy rabbit (talk) 00:40, 10 August 2008 (UTC)
- The claim that all analytic truths are in some sense vacuous is one which has been held by many prominent philosophers (as has the negation of the claim, as usual in philosophy!). The fact that very few mathematicians would find this position appealing does not change this. It seems to me that this article -- on a topic which belongs most to logic and philosophy -- is being overly skewed towards mathematics. This is not just an article on vacuous truth in mathematics, nor should it be.
- At the same time, the treatment of mathematics and mathematicians in the relevant section rings false to me, especially the following passage:
- There are however vacuous truths that even most mathematicians will outright dismiss as "nonsense" and would never publish in a mathematical journal (even if grudgingly admitting that they are true). An example would be the true statement
- Every infinite subset of the set {1,2,3} has precisely seven elements.
- This statement is not nonsense, and my agreement that it is true is not in the least grudging. I am not sure exactly how publication creeps into the discussion of truth, but mathematicians seek to publish (papers containing one or more) theorems, not truths. Plclark (talk) 20:35, 10 August 2008 (UTC)
(outdent) The thing is, I hear vacuous truth as a technical term, not necessarily the same as "truth in some sense vacuous", so whether all analytic truths are in some sense vacuous doesn't really enter into the discussion much. What I don't really get is, what's wrong with the term analytic truth, if that's what you mean? Is it just a way of saying "I want to talk about analytic truth but I don't want people to think I'm a Kantian"?
- I have no problem whatsoever with the term analytic truth. All I was saying was, so far as I know -- and (damn it, Jim) I'm a mathematician, not a philosopher, so I can't speak to why they do it or even how prevalent that use is in contemporary philosophy -- this usage is for real: i.e., reputable and sourced. While it would absolutely be a good idea to be clear about these distinct uses of vacuous truth, and so far as I know one could appease the other usage by including a very short section saying essentially "Some people have used vacuous truth also to mean analytic truth", it is not within our power to squelch this usage entirely, I think.
From a practical point of view, the large majority of the links to this article are from mathematics articles, a trend that I think we can expect to continue. So while it may well be that we need a bit more acknowledgment of the other usage, we certainly don't want the first paragraph to be mainly about analytic truth. --Trovatore (talk) 22:18, 10 August 2008 (UTC)
- Again, I think the article should be primarily from the perspective of logic and philosophy. Mathematicians know about and use this notion but not, I would say, in a really deep or essential way, i.e., it's certainly "no big deal" to us and almost any sentence in a math paper which contains the term could easily be rewritten not to. On the other hand, there are (I gather) legitimate philosophical issues surrounding the term. It would be nice if the article said something about them. Plclark (talk) 23:16, 10 August 2008 (UTC)
So it seems this article should be completely re-done to separate the mathematical definition of vacuous truth from the philosophical debate about it, of which I am rather ignorant.
My own opinion on what the term vacuous truth is that the statement itself is in some way meaningless, essentially the implication/quantifing over the empty set example given in the article, and this is very much the common usage of the term within mathematics.
As for the philosophical/linguistic debate about the term this should be kept separate, whilst still in the same article.KingStuart (talk) 14:53, 29 March 2011 (UTC)
Lying
[edit]Not that it matters, but Note that lying could be defined as knowingly making a false statement is wrong; lying should be defined as knowingly making a false statement with the intention of deceit. Albmont (talk) 17:41, 16 October 2008 (UTC)
Devoid of content?
[edit]Not necessarily. In set theory, much of the definition and existence of the null set is pretty much determined by the vacuous truth that, for every member x of the null set, x is also a member of any other given set (which is of course a vacuous truth.) MarcelB612 (talk) 22:54, 10 August 2009 (UTC)
Scrap this anti-logical, anti-mathematical nonsense
[edit]By the same arguments in this erroneous article, there is such a thing as a vacuous falsehood. 61.132.87.130 (talk) 03:45, 14 April 2010 (UTC)
Quite possibly tgere is, for all we know. So, what's wrong with that? 10:42, 9 May 2020 (UTC) — Preceding unsigned comment added by TheGrandRascal (talk • contribs)
correct resolution
[edit]The correct resolution for the conundrums raised in this article is that vacuous truths are especially false: they are false because they would be false, were the first part true the second part would not follow or be false, or the statement as a whole would be false but they are even more especially more so false because the first part is false. So not only is a vacuous truth false, it's ESPECIALLY false. "Were present King of France goes prancing around naked in pubic, nobody would even bothers to take a photograph" is ESPECIALLY false because it is false enough to say that were the king of France to prance around naked in public nobody would even bother to take a photograph, but it is even MORE ESPECIALLY false because there is no present king of France. Thus the article should be written thusly:
Confused mathematicians have called a "vacuous truth" any especially false statement that is not only false in its conclusion but especially false in that its premise is not even close to being an appropriate one to draw conclusions from.
For example, the statement "all cell phones in the room are turned off" is especially false if there are no cell phones in the room: it is false in that no cell phones are turned of, but it is even more especially false in that there are not even any cell phones in the room.
To confused mathematicians, who have historically called this a vacuous "truth", the statement would be true; however, tge "all cell phones in the room are turned on" would also be considered "true" -- and not 'especially false', which is the correct resolution. Likewise mathematicians have not traditionally accepted as even more especially false the statement: "all cell phones in the room are turned on and turned off".
And so on. Please update the whole article to reflect the correct resolution. You may also publish this correct resolution first.
Mathematicians need to be careful that when they make a general statement, such as "if x is a positive integer, then insofar as x is even, x + 2 is even", the last part can be ESPECIALLY FALSE. It is ESPECIALLY FALSE to say "insofar as x is even, x + 2 is even" when x is odd, for example when x is 7.
Let's go through it: "Insofar as (if) 7 is even, then 9 is even" is ESPECIALLY FALSE, because the whole statement is baloney, but even more so the whole premise about seven being even is even more hogwash. Thus it is an even more especially false statement as regards odd x's. (A point to be careful on.)
Statements "If the present king of france is bald..." are ESPECIALLY false (whatever the final part of the sentence).
Finally, correcting this article enables you to resolve correctly the exam paradox (execution paradox).
http://en.wikipedia.org/wiki/Unexpected_hanging_paradox
realizing that the statement "if the teacher will give the exam on Friday, then we will know this fact come thursday night" is ESPECIALLY FALSE if the teacher is not giving the exam on Friday enables you to see the correct resolution to the hanging (non)-paradox.
if the teacher does not give the exam on Friday, all the deductions following thereafter are not only false, they are ESPECIALLY false.
It is ESPECIALLY false to say, then, in this case, the teacher must give it by thursday if the students have not had it by thursday, and so on, growing ever more especailly more especially false with each ESPECIALLY false especially bad deduction.
The teacher can give the test on any day except Friday. on Thursday morning the students would wonder if their statement "If the teacher does not give the exam today, he will give it tomorrow and yet surprise us" is ESPECIALLY false, or merely false.
likewise on Wednesday the students will wonder if their statement "if the teacher does not give the exam today, it is either false or ESPECIALLY false that if he does not give it tomorrow (Thur), he will give it Friday and yet surprise us" is false or ESPECIALLY false
likewise on Tuesday the students will wonder if their statement is false or ESPECIALLY false that, if the teacher does not give the exam today, it is either false or ESPECIALLY false that if he does not give it tomorrow (Wed), it is either false or ESPECIALLY false that if he does not give it the next day (Thur), he will give it Friday and yet surprise us."
And early Monday morning, the first chance to talk before possibly being given the test, the students can furiously debate whether it is merely false or ESPECIALLY FALSE to say that if they do not get the test tomorrow (Tuesday), it is either false or ESPECIALLY false that if he does not give it the next day (Wednesday), it is either false or ESPECIALLY false to say that if he does not give it the next day (Thur), he will give it Friday and yet surprise us."
Naturally whether these statements are false or ESPECIALLY false has no bearing on whether the studetns are being given a test, and, resigned, they must simply await the teacher to come in and tell them whether they are being tested.
(In case you think this is semantics, consider the two-day case. The teacher will give the test Monday or Tuesday and yet surprise the students. The student could reason "if the test is not given today, then if tomorrow it is not given the condition that it is a surprise is broken". This contains an ESPECIALLY FALSE condition either in the first part (the test is not given today) or in the second (if tomorrow it is not given).
This resolution is clearly the correct one, and you should change the whole article (or any other relevant mathematics) to reflect this. You may publish something in some glossified paper form first if you need to reference it. 188.157.169.36 (talk) 22:57, 20 March 2012 (UTC)
- So you say that for "if A then B" to be true, A must be true. Usually, when someone (including mathematicians) says that "if P then..." he does not know whether P is actually true, he just says what happens in the case that P is true --84.229.25.134 (talk) 14:08, 21 March 2012 (UTC)
empty element & infinite element in a set.
[edit]A set is delimited by the empty element & infinite element in that set, those being the boundary conditions onto that set, and therefore no statement made about the elements of a set include the empty set & infinite set. Inside the set, the intersection of the elements with the empty set element & infinite set element pertain to the boundary limitations but never reach those boundary limitations, therefore those are limits towards, and never on.
That mistake in logic is very similar to the assertion that division by zero, is the exception, not the rule, where in fact, multiplication is the exception, not the rule, the rule being that multiplication does NOT include zero nor infinite as elements of the set.
That same error in logic is derived from educational sessions where it is assumed that numbers stand on their own, without the presence of operators. That is not true, a description of a mathematical process contains two element subsets, the set of numbers onto which it is applicable, AND the subset of operators which are applicable. Defacto, the operators themselves, are proper elements of that set, due the union of both into the set.
The reason for not allowing zero in multiplication, is because the inflection point of addition & subtraction is NOT the same as the inflection point for multiplication & division [0 for +-, 1 for */], therefore the intersection at that point does not exist for all elements consisting of (number;operator) pairs as elements, and the intersection at that point becomes the empty set [of which the infinite set is a particular result in inflection]. — Preceding unsigned comment added by 201.209.217.235 (talk) 13:25, 8 February 2013 (UTC)
- The set {1, 2, ⑀} has the elements 1, 2, ⑀. Which of those is the "empty element" and which the "infinite element"? Are you confusing "sets" with "elements", among other category errors? — Preceding unsigned comment added by 125.239.154.159 (talk) 00:27, 23 January 2021 (UTC)
A similar term for when the consequent is a tautology?
[edit]Does anyone know of a term for a statement P->Q where Q is a tautology? I believe that if such term exists, it should be presented in this article. — Preceding unsigned comment added by 46.121.232.249 (talk) 12:41, 4 April 2014 (UTC)
- Well, tautology? P → ⊤ is equivalent to ¬P ∨ ⊤ which is itself a tautology. Unless you refuse to believe in material conditionals. Or you could say that (P → ⊤) ↔ (⊥ → ¬P), making it yet another example of a vacuous truth. Unless you refuse to believe in contrapositives. — Keφr 19:30, 4 April 2014 (UTC)
- Isn't a vacuous truth also a tautology? I was looking for a term analogous to vacuous truth, in the sense that just as vacuous truth speaks of a implication whose antecedent is a contradiction (or always false), the term I'm looking for speaks of a proposition whose consequent is a tautology (or always true). Both are tautologies. — Preceding unsigned comment added by 213.57.104.221 (talk) 21:42, 6 April 2014 (UTC)
- I doubt a specific term for this exists, because such implications are not very interesting to logicians — if you already know that Q is true, why bother investigating if P implies it? (But if you insist, this trivially follows from the deduction theorem.) Whereas vacuous truths arise naturally in mathematical induction and are somewhat counterintuitive, making them worthy of an own name. — Keφr 09:09, 7 April 2014 (UTC)
If she's an X, then I'm a Y
[edit]Removed this:
- Such statements can also be used sarcastically, as in the line "If she's a lady, then I'm a Vermicious Knid!" spoken by the character Grandpa Joe from the film Willy Wonka & the Chocolate Factory.
This is a humorous application of modus tollens that has nothing to do with vacuous truths: the speaker is supposed to infer that, since Grandpa Joe isn't a Vermicious Knid, then "she" must not be a lady. Although the two statements have no logical connection, we're supposed to infer the antecedent must be false, which is distinct from it being obviously false on its own ("if Uluru is in France") and rendering the consequent irrelevant. 31.169.57.1 (talk) 12:30, 9 November 2015 (UTC)
For any integer x, if x > 5 then x > 3.
[edit]This is an insanely poor example. To use it as an example of a "Vacuous Truth", you have to completely ignore the meaning of the word "If", and how if/then operators actually function. The argument "If 2 > 5, then 2 > 3" is completely true, and undeniably logical. Because 2 is NOT greater than 5, so the argument stops there. There's no need to compare 2 to 3, because it's already failed the first conditional test.
The nephew example is wrong
[edit]I argue that the nephew example is not an example of vacuous truth, because the set of nephews involved is not empty.
Here's one that I claim to be a vacuous truth, since I have no children: "all my children are cats".
Also, all my extraterrestrial friends are beavers and love ice skating on the sun.
--Gzorg (talk) 13:12, 19 May 2017 (UTC)
I agree. I have changed the page to include your first example instead of the nephew example. 50.35.82.244 (talk) 10:34, 30 May 2017 (UTC)
- First, I'm by far not an expert, and this is shaky ground. But I would like to put your attention to Russell's On Denoting and the Theory of descriptions. As far as I understand Russel's concept, the statement "all my children are cats" is an idenfinite description which is to be interpreted as
- There exist at least one x with the property that x is a child; and
- x is my child; and
- x is a cat.
- This statement is always wrong, because the first condition is wrong. At least, if the Law of excluded middle (LEM) is applied. However, in the example it is said, that both statements
- "All my children are cats" is a vacuous truth, when spoken by someone without children. Similarly, "None of my children are cats" would also be a vacuous truth, when spoken by the same person.
- Does this mean that LEM is not applied here? Heiko242 (talk) 19:22, 8 May 2020 (UTC)
- No. It means that your item 1 is not part of the meaning of "all my children are cats". If Russell said it was, Russell was wrong. --Trovatore (talk) 20:36, 8 May 2020 (UTC)
Article quality has become poor. Has inconsistencies and also needs explanation of why vacuous truth exists.
[edit]The vacuous truth article has become poor quality. At one time, this article was even a featured article (way back in January 2004, admittedly) but the long chain of edits since then have stagnated the article, causing its quality to not keep pace with other Wikipedia articles. There are at least two major problems with the article as it stands.
1. The page is inconsistent in its stance on what vacuous truth is, but doesn't make this explicit (potentially causing confusion). The top section of the article gives two different definitions of what vacuous truth is. The first paragraph says that vacuous truth is "a statement that asserts that all members of the empty set have a certain property". The second paragraph says that vacuous refers to "a conditional statement with a false antecedent". These are not the same thing, although both are indeed sometimes referred to as "vacuous truth". This should be explained to the reader implicitly, rather than giving two conflicting definitions in a poorly phrased way like the article currently does.
2. Little to no explanation for why vacuous truth exists is given in the article, even though such information is readily available. Previous attempts by editors (dating back years) of explaining why vacuous truth has to apply have been deleted based on false/misguided notions by other editors that it amounts to "essay-like" content or "original research" etc. However, there is no other way to explain the reason why vacuous truth exists except by walking through the truth tables and illustrating that the other possible truth tables one might choose don't work, and doing so amounts to *direct evidence* rather than research. Direct logical proof of extremely simple facts like this should not require citation, especially in the math sections. It isn't original research when it is trivially obvious from the basic truth tables.
This would be like the article on water not giving any explanation of the molecular chemistry of H20, or like a physics article giving no mention of the underlying principles. It is absurd. Explaining why vacuous truth exists is not original research. It is the bare minimum of what should be in the article, but isn't because misguided/rigid-minded editors keep deleting it. Without an explanation for the underlying why behind vacuous truth, the article is massively less valuable to the public, to the point of bordering on being relatively worthless.
Stop being so actively hostile to clarity and comprehension. There is a reason why the math pages on Wikipedia are regarded as the most incomprehensible subset of Wikipedia by the general public. The community has a culture of deliberate obscurity and systematic hostility to anything that is easy to understand. It's almost as if you don't want the public to understand, just so that you can feel smarter than them by pretending to know more by being deliberately obscure. Huge swathes of the math section of Wikipedia could use being re-written, but the editing culture is currently too hostile for any editors to do so. The community scares away all of the new editors who care about clarity, thus causing the articles to accumulate lots of cruft and superficial obscurantism that adds no value.
The most recent example of this (for this article) was when Wcherowi removed my recent edit (https://en.wikipedia.org/enwiki/w/index.php?title=Vacuous_truth&oldid=783859142) where I resurrected someone else's text from years earlier (with some minor edits) that explained very clearly why vacuous truth exists, at least for the case of classical truth dealing with simple true-false values. By not including a section that explains the why behind vacuous truth like this, you are massively reducing the value of this article for the users. It's like if the article on water had no content whatsoever on the chemistry of water (as I said earlier). It is absurd.
Just because someone from years ago labeled the content as "essay-like" doesn't mean you should continue blindly assuming that it is. Including an explanation for the underlying why of vacuous truth is ESSENTIAL to the article being useful, just as H20 chemistry (the underlying why) would be essential to the article on water. The exact wording and title of the explanation can vary, but it DEFINITELY should be in the article in at least some form.
In addition to the need for adding back in some kind of explanation for why vacuous truth exits, this article in general seems like it may even need a complete re-write. Originally, I might have been willing to, but it seems to me that the community is too hostile to clarity for it to be worth me investing any more time to making these kinds of major contributions to Wikipedia articles (for example, I wrote pretty much the entire article on Trapezoidal Distribution recently, which used to be a much less useful stub). No wonder you people have trouble keeping new editors. If this is how the community acts, where even the most basic most fundamentally important aspects of what an article on a piece of subject matter needs to cover is viewed with contempt, then editing here on Wikipedia probably isn't a very good use of time, in most cases. Attempts at clarifying articles to even a basic standard of usability are frequently destroyed. Many of the deleted edits in many articles are actually better than the current versions of them. I see similar problems a lot on StackOverflow, where the moderators often "close as not constructive" some of the most useful threads (in fact, the majority of the most useful pages I've seen on StackOverflow were "closed as not constructive" by mods, as I seem to recall).
Anyway, this time round, if you want the article to improve you'll have to do the work yourself. I know better than to invest in a community that can't even value the most basic and fundamental essentials of what a piece of content should have. Not including the underlying why in many of the other subsets of Wikipedia would never be tolerated in many of the other subsets of Wikipedia, but apparently in math (where people are in love with obscurantism) including the fundamentals of any concept in a way that is easy for the general public to understand is viewed with nothing but hostility. How very counterproductive. As long as this culture continues to dominate on Wikipedia, it will never reach its full potential, and more and more editors will continue abandoning the site (which is what the current trends are if you look at the charts).
Perhaps, however, there is some faint chance that me writing this here will reduce this toxic cultural trend at least somewhat. Maybe at least someone out there is sane. It's ludicrous that something so essential and fundamental to understanding a subject would be deleted. Wikipedia really has become a victim of its own culture and policies.
--MagneticInk (talk) 17:16, 5 June 2017 (UTC)
- Perhaps you would have had a better understanding of why you have run into these problems had you read the essays WP:HOW and WP:5P. Pointing out the deficiencies of this article has been constructive and there is nothing wrong with the content of the material you tried to add to fix those problems. The issue lies with the fact that only verifiable content is acceptable. Content that has appeared elsewhere and can be directly referenced via reliable secondary sources. Editors are not allowed to espouse their own views on a topic or create new and different ways to look at something. One hallmark that an editor might be doing so is essay-like writing, especially if there is no accompanying documentation. It takes a considerable amount of work by other editors to change that into something with an encyclopedic tone replete with sources–so much so that it is often better to scratch the whole thing and start over again. If you are familiar with the literature you can contribute to this project by referencing this material and indicating what is said there. That is the, albeit limited, role of a Wikipedia editor. Contributions of this ilk are always welcome. --Bill Cherowitzo (talk) 18:00, 5 June 2017 (UTC)
Vacuous truth example on empty set
[edit]So why delete my submit and not add a source / adjust it? Aren't the empty set and its properties the most common vacuous truth example in mathematics? If find the example regarding the closed and open property very important for basic topology and maybe more important than the other two ones. — Preceding unsigned comment added by (Tensorproduct (talk) 23:42, 8 June 2017 (UTC))
- I did have the option to correct the statement, but chose not to do so since I don't think that the example was a very good one for the level of readership of this article. Being familiar with topological concepts would be a prerequisite to understanding this example and if you have that knowledge you are probably mathematically sophisticated enough to not need to look at an article on vacuous truth. Also, I believe that if you want to include a statement, you have the responsibility of providing a citation ... asking others to do your work for you is a bit gauche. --Bill Cherowitzo (talk) 03:51, 9 June 2017 (UTC)
Make page: false truth (= pseudotruth; a false truth, data or information)
[edit]These are called lies and we already have a page Lie. --Bill Cherowitzo (talk) 18:13, 7 November 2017 (UTC)
erased post
[edit]A post of mine was correctly deleted from here, and I moved the discussion about it to User talk:Pashute#From Talk:Vacuous truth on my personal talk page.פשוט pashute ♫ (talk) 23:31, 13 December 2021 (UTC)
A more intuitive explanation in simpler English
[edit]I propose a more intuitive explanation using the terminology of the field but also shortly explaining each new term as we encounter it, which could, I hope, better convey the meaning of this term, to anyone studying philosophy, logic or math:
The vacuous truth of a statement (meaning Truth from a Vacuum, truth obtained from something missing) is implied by the fact that one cannot even begin to consider the hypothesis as being wrong, since there is no way that would imply or lead to the conclusion being wrong.
Formally: B, which can only be true or false, is determined true, when there cannot be an A that would imply that B is false.
In formal logic and mathematics vacuous truth is defined as a conditional (a statement where A implies B), which is decided to be true when the opening premise of of any hypothesis leading to B cannot be false. In terms of formal logic: The truth of a conditional because the antecedent cannot be satisfied.
If a universal statement (a statement that can only be true or false) can be converted into a conditional (where A implies that B), it too, of course, can be determined to be true in the same way.
In mathematics the term vacuous triviality is used in a similar manner for the truth of a term (B) derived by definition (called trivial because there is no mathematical processing involved or needed) when no statement (A) can lead to the conclusion of (B) being wrong.
For example, the term vacuous triviality is used in a scientific article on Philosophy of Mind when discussing subjunctive conditionals - a conditional statement (a statement in which A implies B) discussing and considering what would be if something (A) would be different from the way it in fact is, or has been, and asking if it would imply B:
- "A subjunctive conditional's truth can be vacuosly trivial if its antecedent is impossible or non-counterfactually trivial, as I shall shortly explain, if its antecedent and consequent are both true."(ref)Interactionism and Overdetermination Eugene Mills, in American Philosophical Quarterly Vol. 33, No. 1 (Jan., 1996), pp. 105-117 (13 pages) Published By: University of Illinois Press (JSTOR)(/ref)
Please consider and tell me what you think. And if you have a positive and simple example (which I cannot think of) in plain English I would be grateful. פשוט pashute ♫ (talk) 00:03, 14 December 2021 (UTC)
- I think you're missing the point. Your definitions of vacuous truth have too much about the consequent in them, but really it is purely about the antecedent. A->B is vacuously true as long as A is false, regardless of whether A has any connection to B. For instance, "If this sentence is written in Japanese, then we should delete the vacuous truth article" is a vacuously true implication, because the sentence is not written in Japanese. —David Eppstein (talk) 00:52, 14 December 2021 (UTC)
- OK, perhaps so. I'm searching for the LINGUISTIC justification for the use of "truth" here, and perhaps that's what made me err. (If I did).
- If that is the case, that A->B is vacuously true even when B is actually false, (which is not what I originally understood from "a conditional... that is true because the antecedent cannot be satisfied") then where is the sense of "truth" here?
- There are three parts to the conditional:
- a. The antecedent A which could be true or false: A1: Bicycles have two wheels - which is always true. A2: Bicycles grow on trees - which is factually always false. A2b. Squares have exactly three angles - false by definition. A3: My bicycle is broken - can vary depending on who's bicycle we are talking about and when.
- b. The consequence, which could be true or false. B1: Bicycles roll on their wheels. which is factually correct. Or: B2. Bicycles walk on their feet. which is factually incorrect. Or B3. Triangles have three angles - which is correct by definition. B4. Triangles have 4 angles - which is incorrect by definition.
- c. And then we have the implication. A->B meaning that A being true implies that B is true, which itself can be correct or not. (A being true but not leading to B being true would mean the implication is false. But when A is false that does not imply anything about B, which could be true and could be false.
- When we say a claim is true, we DO usually look at the consequent. But perhaps in this case we don't.
- If 1) A is true and 2) A->B (where #2 is read: When A is true A DOES lead to B being true) then we can say that all three parts are true.
- But if A is false, and B is in fact true - or ...and B is in fact false, perhaps I can find a linguistic justification to call this implication a truth.
- (I'm thinking aloud here) When in fact Af->Bf our assertion of A->B is showing its colors. We said A->B. But A is NOT, so B is not too.
- On the other hand we can also look at it like this: if Af->Bt(!), Our assertion A->B said nothing about the case of NOT A. So we are NOT CONTRADICTING the case of Af->Bt. Right? Is this correct? If so I'll put it into a shorter more concise suggestion. פשוט pashute ♫ (talk) 00:31, 15 December 2021 (UTC)
- It is definitely the case that in standard forms of mathematical logic the implication A→B is defined to be true when both A and B are false, regardless of whether A and B have any causal connection to each other. There are other forms of logic that attempt to get closer to the more common linguistic meaning of implication, where a causal connection is implied, but that's not what this article is about. —David Eppstein (talk) 00:52, 15 December 2021 (UTC)
- OK thank you! So I think it should be conveyed clearly and explicitely, in the opening sentence, so that the layman who knows a bit of logic and a bit of math but is not an expert can immediately understand the concept.
- How about:
- In mathematics and logic, a vacuous truth (meaning truth from a vacuum) is a conditional that is true because the antecedent cannot be satisfied.[1] So for a conditional → (read: implies ) in which can never be true, it follows that this conditional, →, is said to be "vacuously true", regardless of whether is in fact true, false or undetermined. If a universal statement such as can be converted to a conditional statement, such as →, it too of course can be determined true in the same way.
- If the above is correct, (non-vacuously true), and satisfactory, I'll find two refs to substantiate what I just wrote, one for the universal statement, one for the "regardless" clause. פשוט pashute ♫ (talk) 16:52, 15 December 2021 (UTC)
- It's important to also include the "universally quantified" parts of the lead. For instance, "all horse-sized ducks can talk" is vacuously true, because there are no horse-sized ducks. It can be converted into a vacuously-true implication (if x is a duck and is horse-sized, then x can talk) but doesn't need to be converted to be called vacuously true. —David Eppstein (talk) 17:55, 15 December 2021 (UTC)
- It is definitely the case that in standard forms of mathematical logic the implication A→B is defined to be true when both A and B are false, regardless of whether A and B have any causal connection to each other. There are other forms of logic that attempt to get closer to the more common linguistic meaning of implication, where a causal connection is implied, but that's not what this article is about. —David Eppstein (talk) 00:52, 15 December 2021 (UTC)
Implied falshood in example statement
[edit]In the example given at the top of the page, the sentence "her cellphone is off" implies that "she has a cellphone", or mathematically speaking, "exists (her cellphone) such that is_off(her cellphone)". This is clearly false, and so should not be a good example of a vacuous truth 176.12.196.63 (talk) 13:37, 10 November 2022 (UTC)
Historic context
[edit]How was this reasoned in mathematical history? I've heard that Greek philosophers got it backwards, as vacuously false. DAVilla (talk) 18:12, 30 November 2023 (UTC)
Accuracy of colloquial examples
[edit]The introduction ends with the following lines:
In addition, a vacuous truth is often used colloquially with absurd statements, either to confidently assert something (e.g. "the dog was red, or I'm a monkey's uncle" to strongly claim that the dog was red), or to express doubt, sarcasm, disbelief, incredulity or indignation (e.g. "yes, and I'm the King of England" to disagree with a previously made statement).
Are these actually vacuous truths though? Neither of them is a conditional statement as-written. The first one seems to be closer to disjunctive syllogism ((A∨B) ∧ ~B = A), and the second represents a contradiction ((A∧B)∧~B = F). Anerdw (talk) 00:23, 5 April 2024 (UTC)