Ir al contenido

Álgebra

El portal asociado a este artículo
De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 04:54 6 ago 2008 por 63.245.13.230 (discusión). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.

El álgebra es la rama de las matemáticas que estudia las estructuras, relaciones y cantidades. Junto a la geometría, el análisis matemático, la combinatoria y la teoría de números, el álgebra es una de las principales ramas de la matemática.

La palabra «álgebra» deriva del tratado escrito por el matemático persa Muhammad ibn Musa al-Jwarizmi, titulado Al-Kitab al-Jabr wa-l-Muqabala (en árabe كتاب الجبر والمقابلة) (que significa "Compendio de cálculo por el método de completado y balanceado"), el cual proporcionaba operaciones simbólicas para la solución sistemática de ecuaciones lineales y cuadráticas. Etimológicamente, la palabra «álgebra» (también nombrado por los árabes Amucabala) جبر (yebr) (al-dejaber), proviene por lo tanto del árabe y significa "reducción", operación de cirugía por la cual se reducen los huesos luxados o fraccionados (algebrista era el médico reparador de huesos).


Álgebra elemental

Álgebra elemental es la forma más básica del álgebra. A diferencia de la aritmética, en donde solo se usan los números y sus operaciones aritméticas (como +, −, ×, ÷), en álgebra los números son representados por símbolos (usualmente a, b, x, y). Esto es útil porque:

  • Permite la formulación general de leyes de aritmética (como a + b = b + a), y esto es el primer paso para una exploración sistemática de las propiedades de los números reales.
  • Permite referirse a números "desconocidos", formular ecuaciones y el estudio de cómo resolverlas.
  • Permite la formulación de relaciones funcionales.andy

Estructura algebraica

En la matemática, una estructura algebraica es un conjunto de elementos con unas propiedades operacionales determinadas; es decir, lo que define a la estructura del conjunto son las operaciones que se pueden realizar con los elementos de dicho conjunto y las propiedades matemáticas que dichas operaciones poseen. Un objeto matemático constituido por un conjunto no vacío y algunas leyes de composición interna definida en él es una estructura algebraica. Las estructuras algebraicas principales son:

Signos y Símbolos

En el álgebra se utilizan signos y símbolos -en general utilizados en la teoría de conjuntos- que constituyen ecuaciones, matrices, series, etc.

Aquí algunos ejemplos:

Signos y Símbolos
Expresión
Uso
+ Además de expresar adición, también es usada para expresar operaciones binarias
c ó k Expresan Términos constantes
Primeras letras del alfabeto
a,b,c,...
Se utilizan para expresar cantidades conocidas
Últimas letras del alfabeto
...,x,y,z
Se utilizan para expresar incógnitas
n Expresa cualquier número (1,2,3,4,...,n)
Exponentes y subíndices
a',a'',a''', -
Expresar cantidades de la misma especie, de diferente magnitud.


Véase también