Ir al contenido

Usuario:Egaida/Revisión Aluminio

De Wikipedia, la enciclopedia libre

Aluminio

Historia

[editar]
Tendencia de la producción mundial de aluminio.

El aluminio se utilizaba en la antigüedad clásica en tintorería y medicina bajo la forma de una sal doble, conocida como alumbre y que se sigue usando hoy en día. En el siglo XIX, con el desarrollo y la física y la química, se identificó el elemento. Su nombre inicial, aluminum, fue propuesto por el británico Sir Humphrey Davy en el año 1809. A medida que se sistematizaban los nombres de los distintos elementos, se cambió por coherencia a la forma aluminium, que es la preferida hoy en día por la IUPAC debido al uso uniforme del sufijo -ium. No es sin embargo la única aceptada ya que la primera forma es muy popular en los Estados Unidos.[1]​ En el año 1825, el físico danés Hans Christian Ørsted, descubridor del electromagnetismo, consiguió aislar por electrolisis unas primeras muestras, bastante impuras. El aislamiento total fue conseguido dos años después por Friedrich Wöhler.

Primera estatua construida de aluminio dedicada a Anteros y ubicada en Picadilly- Londres, construida en 1893.

La extracción del aluminio a partir de las rocas que lo contenían se reveló como una tarea ardua. A mediados de siglo, podían producirse pequeñas cantidades, reduciendo con sodio un cloruro mixto de aluminio y sodio, gracias a que el sodio era más electropositivo. Durante el siglo XIX, la producción era tan costosa que el aluminio llegó a considerarse un material exótico, de precio exhorbitado, y tan preciado o más que la plata o el oro. Durante la Exposición Universal de 1855 se expusieron unas barras de aluminio junto a las joyas de la corona Francia. El mismo emperador había pedido una vajilla de aluminio para agasajar a sus invitados. De alumino se hizo también el vértice del Monumento a Washington, a un precio que rondaba en 1884 el de la plata.[2]

Diversas circunstancias condujeron a un perfeccionamiento de las técnicas de extracción y un consiguiente aumento de la producción. La primera de todas fue la invención de la dinamo en 1866, que permitía generar la cantidad de electricidad necesaria para realizar el proceso. En el año 1889, Karl Bayer patentó un procedimiento para extraer la alúmina u óxido de aluminio a partir de la bauxita, la roca natural. Poco antes, en 1886, el francés Paul Héroult y el norteamericano Charles Martin Hall habían patentado de forma independiente y con poca diferencia de fechas un proceso de extracción, conocido hoy como proceso Hall-Héroult. Con estas nuevas técnicas la producción de aluminio se incrementó vertiginosamente. Si en 1882, la producción anual alcanzaba apenas las 2 toneladas, en 1900 alcanzó las 6.700 toneladas, en 1939 las 700.000 toneladas, 2.000.000 en 1943, y en aumento desde entonces, llegando a convertirse en el metal no férreo más producido en la actualidad.

La abundancia conseguida produjo un colapso del precio, y que perdiese la vitola de metal preciado para convertirse en metal común.[3]​ Ya en 1895 abundaba lo suficiente como para ser empleado en la construcción, como es el caso de la cúpula del Edificio de la secretaría de Sidney, donde se empleó este metal. Hoy en día las líneas generales del proceso de extracción se mantienen, aunque se recicla de manera general desde 1960, por motivos medioambientales pero también económicos ya que la recuperación del metal a partir de la chatarra cuesta un 5% de la energía de extracción a partir de la roca.

Estructura atómica

[editar]
Lingote de aluminio.

El aluminio tiene número atómico 13. Los 13 protones que forman el núcleo están rodeados de 13 electrones dispuestos en la forma:

1s22s22p63s23p1

La valencia es 3 y las energias de ionización de los tres primeros electrones son, respectivamente: 577,5 kJ/mol, 1816,7 kJ/mol y 2744,8 kJ/mol. Existen en la naturaleza dos isótopos de este elemento, el 27Al y el 26Al. El primero de ellos es estable mientras que el segundo es radiactivo y su vida media es de 7,2×105 años. Además de esto existen otros siete isótopos cuyo peso está comprendido entre 23 y 30 unidades de masa atómica.

El 26Al se produce a partir del argón a causa del bombardeo por la radiación altamente energética de los rayos cósmicos, que inciden en la atmósfera sobre los núcleos de este elemento. Al igual que el 14C, la medida de las abundancias del 26Al es utilizada en técnicas de datación, por ejemplo en procesos orogenéticos cuya escala es de millones de años o para determinar el momento del impacto de meteoritos. En el caso de estos últimos, la producción de aluminio radiactivo cesa cuando caen a la tierra, debido a que la atmósfera filtra a partir de ese momento los rayos cósmicos.

Características

[editar]
Detalle superficial (55×37 mm) de una barra de aluminio (pureza ≥ 99,9998%). La superficie ha sido pulida mediante medios químicos con ácido (etching ) para evidenciar a simple vista las estructura de las cristalitas metálicas .

Características físicas

[editar]

El aluminio es un elemento muy abundante en la naturaleza, sólo aventajado por el silicio y el oxígeno. Se trata de un metal ligero, con una densidad de 2,7 kg/m3, y con un bajo punto de fusión (660 ºC). Su color es blanco y refleja bien la radiación electromagnética del espectro visible y el térmico. Es buen conductor eléctrico (entre 34 y 38 m/(Ω mm2)) y térmico (80 a 230 W/(m·K)).

Características mecánicas

[editar]

Mecanicamente es un material blando (Escala de Mohs: 2-3-4) y maleable. En estado puro tiene un límite de resistencia en tracción de 160-200 N/mm2 [160-200 MPa]. Todo ello le hace adecuado para la fabricación de cables eléctricos y láminas delgadas, pero no como elemento estructural. Para mejorar esta propiedades se alea con otros metales, lo que permite realizar sobre él operaciones de fundición y forja, así como la extrusión del material. También de esta forma se utiliza como soldadura.

Características químicas

[editar]
Estructura atómica del aluminio.

La capa de valencia del aluminio está poblada por tres electrones, por lo que su estado normal de oxidación es III. Esto hace que reaccione con el oxígeno de la atmósfera formando rapidamente una fina capa grais mate de alúmina Al2O3, que recubre el material, aislándolo de ulteriores corrosiones. Esta capa puede disolverse con ácído cítrico. A pesar de ello es tan estable que se usa con frecuencia para extraer otros metales de sus óxidos. Por lo demás, el aluminio se disuelve en ácidos y bases. Reacciona con facilidad con el ácido clorídrico y el hidróxido sódico.

Aplicaciones y usos

[editar]

La utilización industrial del aluminio ha hecho de este metal uno de los más importantes, tanto en cantidad como en variedad de usos, siendo hoy un material polivalente que se aplica en ámbitos economicos muy diversos y que resulta estratégico en situaciones de conflicto. Hoy en día, es tan sólo superado por el hierro/acero. El aluminio se usa en forma pura, aleado con otros metales o en compuestos no metálicos. En estado puro se aprovechan sus propiedades ópticas para fabricar espejos domésticos e industriales, como pueden ser los de los telescopios reflectores. Su uso más popular, sin embargo, es como papel aluminio, que consiste en láminas de material con un espesor tan pequeño que resulta facilmente maleable y apto por tanto para embalaje alimentario. También se usa en la fabricación de latas y tetrabriks.

Por sus propiedades eléctricas es un buen conductor, capaz de competir en coste y prestaciones con el cobre tradicional. Dado que, a igual longitud y masa, el conductor de aluminio tiene más conductividad, resulta un componente util para utilidades donde el exceso de peso resulta oneroso. Es el caso de la aeronáutica y de los tendidos eléctricos donde el menor peso implica en un caso menos gasto de combustible y mayor autonomía, y en el otro la posibilidad de separar las torres de alta tensión.[4]

Además de eso, aleado con otros metales, se utiliza para la creación de estructuras portantes en la arquitectura y para fabricar piezas industriales de todo tipo de vehículos y calderería. También está presente en enseres domésticos tales como utensilios de cocina y herramientas. Se utiliza asimismo en la soldadura aluminotérmica y como combustible químico y explosivo por su alta reactividad. Como presenta un buen comportamiento a bajas temperaturas, se utiliza para fabricar contenedores criogénicos.

El uso del aluminio también se realiza a través de compuestos que forma. La misma alúmina, el óxido de aluminio que se obtiene de la bauxita, se usa tanto en forma cristalina como amorfa. En el primer caso forma el corindón, un gema utilizada en joyería que puede adquirir coloración roja o azul, llamándose entonces rubí o zafiro, respetivamente. Ambas formas se pueden fabricar artificialmente.[5]​ y se utilizan como el medio activo para producir la inversión de población en los láser. Asimismo, la dureza del corindón permite su uso como abrasivo para pulir metales. Los medios arcillosos con los cuales se fabrican las cerámicas son ricos en aluminosilicatos. También los vidrios participan de estos compuestos. Su alta reactividad hace que los haluros, sulfatos, hidruros de aluminio y la forma hidróxida se utilicen en diversos procesos industriales tales como mordientes, catálisis, depuración de aguas, producción de papel o curtido de cueros. Otros compuestos del aluminio se utilizan en la fabricación de explosivos.[6]

Producción

[editar]
Centavo estadounidense y trozo de aluminio. El centavo ha sido una moneda fabricada durante años en cobre. En 1974 se fabricó en aluminio, por el valor mismo de los materiales. La moneda en aluminio fue posteriormente rechazada.
Bauxita (Hérault).
Bobina de chapa de aluminio.

El aluminio es uno de los elementos más abundantes de la corteza terrestre (8%) y uno de los metales más caros en obtener. La producción anual se cifra en unos 33,1 millones de toneladas, siendo China y Rusia los productores más destacados, con 8,7 y 3,7 millones respectivamente. Una parte muy importante de la producción mundial es producto del reciclaje. En 2005 suponía aproximadamente un 20% de la producción total.[7]​ A continuación se lista unas cifras de producción:

Año África América
del Norte
América
latina
Asia Europa
y Rusia
Oceanía Total
1973 249 5.039 229 1.439 2.757 324 10.037
1978 336 5.409 413 1.126 3.730 414 11 428
1982 501 4.343 795 1.103 3.306 548 10.496
1987 573 4.889 1.486 927 3.462 1.273 12.604
1992 617 6.016 1.949 1.379 3.319 1.483 14.763
1997 1.106 5.930 2.116 1.910 6.613 1.804 19.479
2003 1.428 5.945 2.275 2.457 8.064 2.198 21.935
2004 1.711 5.110 2.356 2.735 8.433 2.246 22.591
Producción de aluminio en millones de toneladas. Fuente: International Aluminium Association

La materia prima a partir de la cual se extrae el aluminio es la bauxita, que recibe su nombre de la localidad francesa de Les Baux, donde fue extraída por primera vez. Actualmente los principales yacimientos se encuentran en el Caribe, Australia, Brasil y Africa porque la bauxita extraída allí se disgrega con más facilidad. Es un mineral rico en aluminio, entre un 20% y un 30% en masa, frente al 10% o 20% de los silicatos alumínicos existentes en arcillas y carbones. Es un aglomerado de diversos compuestos que contiene caolinita, cuarzo óxidos de hierro y titania, y donde el aluminio se presenta en varias formas hidróxidas como la gibsita Al (OH)3, la bohemita AlOOH y la diasporita AlOOH.

La obtención del aluminio se realiza en dos fases: la extracción de la alúmina a partir de la bauxita (Proceso Bayer) y la extracción del aluminio a partir de esta última mediante electrolisis. Cuatro toneladas de bauxita producen dos toneladas de alúmina y, finalmente, una de aluminio. El proceso Bayer comienza con el triturado de la bauxita y su lavado con una solución caliente de Hidróxido de sodio a alta presión y temperatura. La sosa disuelve los compuestos del aluminio, que al encontrarse en un medio fuertemente básico, se hidratan:

Al(OH)3 + OH- + Na* → Al(OH)4- + Na*
AlO(OH)2 + OH- + H2O + Na* → Al(OH)4- + Na*

Los materiales no alumínicos se separan por decantación. La solución caústica del aluminio se enfría luego para recristalizar el hidróxido y separarlo de la sosa, que se recupera para su ulterior uso. Finalmente, se calcina el hidróxido de aluminio a temperaturas cercanas a 1000 ºC, para formar la alúmina.

2 Al(OH)3Al2O3 + 3 H2O

El óxido de aluminio así obtenido tiene un punto de fusión muy alto (2000 ºC) que hace imposible someterlo a un proceso de electrolisis. Para salvar este escollo se disuelve en un baño de criolita, obteniéndo una mezcla eutéctica con un punto de fusión de 900 ºC. A continuación se procede a la electrólisis, que se realiza sumergiendo en la cuba unos electrodos de carbono (tanto el ánodo como el cátodo), dispuestos en horizontal. Cada tonelada de aluminio requiere entre 17 y 20 MWh de energía para su obtención, y consume en el proceso 460 kg de carbono, lo que supone entre un 25% y un 30% del precio final del producto, convirtiendo al aluminio en uno de los metales más caros de obtener. De hecho, se están buscando procesos alternativos menos costosos que el proceso electrolítico.[8]​ El aluminio obtenido tiene un pureza del 99,5% al 99,9%, siendo las impurezas de hierro y silicio principalmente.[9]​ De las cubas pasa al horno donde es purificado mediante la adición de un fundente o se alea con otros metales con objeto de obtener materiales con propiedades específicas. Después se vierte en moldes o se hacen lingotes o chapas.

Aleaciones

[editar]
Culata de motor de aleación de aluminio.

El aluminio puro es un material blando y poco resistente a la tracción. Para mejorar estas propiedades mecánicas se alea con otros elementos, principalmente magnesio, manganeso, cobre zinc y silicio, a veces se añade también titanio y cromo. La primera aleación de aluminio, el popular duraluminio fue descubierta casualmente por el metalúrgico alemán Alfred Wilm y su principal aleante era el cobre. Actualmente las aleaciones de aluminio se clasifican en series, desde la 1000 a la 8000, según el siguiente cuadro.

Serie Designación Aleante principal Fase principal presente
en la aleación
Serie 1000 1XXX 99% al menos de aluminio -
Serie 2000 2XXX Cobre (Cu) Al2Cu - Al2CuMg
Serie 3000 3XXX Manganeso (Mn) Al6Mn
Serie 4000 4XXX Silicio (Si) -
Serie 5000 5XXX Magnesio (Mg) Al3Mg2
Série 6000 6XXX Magnesio (Mg) y Silicio (Si) Mg2Si
Série 7000 7XXX Zinc (Zn) MgZn2
Série 8000 8XXX Otros elementos -
Série 9000 / Sin utilizar -

Las series 2000, 6000 y 7000 son tratadas térmicamente para mejorar sus propiedas. El nivel de tratamiento se denota mediante la letra T seguida de varias cifras, de las cuales la primera define la naturaleza del tratamiento. Así T3 es una solución tratada térmicamente y trabajada en frío.

  • Serie 1000: realmente no se trata de aleaciones sino de aluminio con presencia de impurezas de hierro o aluminio, o también pequeñas cantidades de cobre, que se utiliza para laminación en frío.
  • Serie 2000: el principal aleante de esta serie es el cobre, como el duraluminio o el avional. Con un tratamiento T6 adquieren una resistencia a la tracción de 442 MPa, que lo hace apto para su uso en estructuras de aviones.
  • Serie 3000: el principal aleante es el manganeso, que refuerza el aluminio y le da una resistencia a la tracción de 110 MPa. Se utiliza para fabricar componentes con buena mecanibilidad, es decir, con un buen comportamiento frente al mecanizado.
  • Serie 4000: el principal aleante es el silicio.
  • Serie 5000: el principal aleante es el magnesio que alcanza una resistencia de 193 MPa después del recocido.
  • Serie 6000: se utilizan el silicio y el magnesio. Con un tratamiento T6 alcanza una resistencia de 290 MPa, apta para perfiles y estructuras.
  • Serie 7000: el principal aleante es el zinc. Sometido a un tratamiento T6 adquiere una resistencia de 504 MPa, apto para la fabricación de aviones.

Extrusión

[editar]
Perfiles de aluminio extruido


  1. IUPAC (en inglés) Página web de International Union of Pure and Applied Chemistry
  2. George J. Binczewski (1995). «The Point of a Monument: A History of the Aluminum Cap of the Washington Monument». JOM 47 (11): 20- 25. 
  3. Varios autores (1984). Enciclopedia de Ciencia y Técnica. Tomo 1, Aluminio. Salvat Editores S.A. ISBN 84-345-4490-3. 
  4. El aluminio también es buen conductor, aunque no tanto como el cobre. Para transmitir el mismo flujo de corriente debe ser aproximadamente un 50% más grueso. Pero, aun haciendo cables más gordos, siguen siendo más ligeros que los de cobre
  5. Alúmina. Monografías.com Trabajo muy extenso y documentado sobre la alúmina realizado por Francisco Castro
  6. Floculantes NTP690: Piscinas de uso público:Peligrosidad de los productos químicos. Ministerio de Trabajo y Asuntos Sociales España.Redactores Asunción Freixa Blanxart, Adoración Pascual Benés Xavier Guardino Solá
  7. Informe sobre reservas mundiales de aluminio elaborado por el USGS americano (en inglés)
  8. World research. Industrias de aluminio en la búsqueda de energía barata. Offnews.info Estos procedimientos parten de arcillas ricas en aluminio en vez de partir de la bauxita.
  9. William F. Smith (1998). Fundamentos de la Ciencia e Ingeniería de Materiales. Madrid: Editorial Mc Graw Hill. ISBN 84-481-1429-9.