Симплекс: различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
Нет такой статьи |
→Связанные определения: Стандарт РуВики. |
||
(не показано 20 промежуточных версий 13 участников) | |||
Строка 1: | Строка 1: | ||
{{другие значения}} |
{{другие значения}} |
||
'''Си́мплекс''' или '''''n''- |
'''Си́мплекс''' или '''''n''-ме́рный тетра́эдр''' (от {{lang-la|simplex}} ‘простой’) — [[геометрическая фигура]], являющаяся [[N-мерное евклидово пространство|''n''-мерным]] обобщением [[треугольник]]а. |
||
== Определение == |
== Определение == |
||
Симплекс (точнее, ''n''-симплекс, где число ''n'' называется '''размерностью''' симплекса) — это [[выпуклая оболочка]] ''n'' + 1 точки [[аффинное пространство|аффинного пространства]] (размерности ''n'' или больше), которые предполагаются [[аффинная независимость|аффинно независимыми]] (то есть не лежат в подпространстве размерности ''n'' − 1). Эти точки называются '''вершинами''' симплекса{{sfn|Александров и Пасынков|1973|с=197—198}}<ref>{{книга|автор=[[Залгаллер, Виктор Абрамович|Залгаллер В. А.]] |часть=Симплекс|заглавие=Математическая энциклопедия. Т. 4|ссылка=http://eqworld.ipmnet.ru/ru/library/books/Vinogradov_MatEnc_t4.djvu|ответственный=Гл. ред. [[Виноградов, Иван Матвеевич|И. М. Виноградов]]|место=М.|издательство=[[Большая Российская энциклопедия (издательство)|Советская энциклопедия]]|год=1984}} — 1216 стб. — Стб. 1151.</ref>. |
Симплекс (точнее, ''n''-симплекс, где число ''n'' называется '''размерностью''' симплекса) — это [[выпуклая оболочка]] ''n'' + 1 точки [[аффинное пространство|аффинного пространства]] (размерности ''n'' или больше), которые предполагаются [[аффинная независимость|аффинно независимыми]] (то есть не лежат в подпространстве размерности ''n'' − 1). Эти точки называются '''вершинами''' симплекса{{sfn|Александров и Пасынков|1973|с=197—198}}<ref>{{книга|автор=[[Залгаллер, Виктор Абрамович|Залгаллер В. А.]] |часть=Симплекс|заглавие=Математическая энциклопедия. Т. 4|ссылка=http://eqworld.ipmnet.ru/ru/library/books/Vinogradov_MatEnc_t4.djvu|ответственный=Гл. ред. [[Виноградов, Иван Матвеевич|И. М. Виноградов]]|место=М.|издательство=[[Большая Российская энциклопедия (издательство)|Советская энциклопедия]]|год=1984|archive-date=2022-01-21|archive-url=https://web.archive.org/web/20220121054322/http://eqworld.ipmnet.ru/ru/library/books/Vinogradov_MatEnc_t4.djvu}} — 1216 стб. — Стб. 1151.</ref>. |
||
Симплекс может быть охарактеризован как множество всевозможных [[выпуклая комбинация|выпуклых комбинаций]] своих вершин <math>A_i</math>: |
|||
: <math>\Delta=\left\{ \sum_{i=0}^n t_i A_i : \left(\sum_{i=0}^n t_i = 1\right) \wedge (\forall i \; t_i \geqslant 0) \right\}.</math> |
: <math>\Delta=\left\{ \sum_{i=0}^n t_i A_i : \left(\sum_{i=0}^n t_i = 1\right) \wedge (\forall i \; t_i \geqslant 0) \right\}.</math> |
||
== Связанные определения == |
== Связанные определения == |
||
[[Файл:Tetrahedron.png|right|240px|thumb|Модель правильного 3-симплекса]] |
[[Файл:Tetrahedron.png|right|240px|thumb|Модель правильного 3-симплекса]] |
||
* '''Открытым симплексом''' называется множество всевозможных [[барицентрическая комбинация|барицентрических комбинаций]] своих вершин с |
* '''''Открытым симплексом''''' называется множество всевозможных [[барицентрическая комбинация|барицентрических комбинаций]] своих вершин с положительными коэффициентами (при этом симплекс с теми же вершинами, удовлетворяющий определению из предыдущего раздела, именуют также '''''замкнутым симплексом'''''; в соответствии с терминологией [[общая топология|общей топологии]], замкнутый симплекс есть [[замыкание (геометрия)|замыкание]] соответствующего открытого симплекса, а этот открытый симплекс есть [[внутренность|открытое ядро]] замкнутого симплекса){{sfn|Александров и Пасынков|1973|с=197—198}}{{sfn|Александров|1968|с=355}}. |
||
* '''Остовом''' симплекса называется множество всех его вершин{{sfn|Александров и Пасынков|1973|с=198}}. |
* '''''Остовом''''' симплекса называется множество всех его вершин{{sfn|Александров и Пасынков|1973|с=198}}. |
||
* '''Рёбрами''' симплекса называются отрезки, соединяющие его вершины{{sfn|Болтянский|1973|с=211}}. |
* '''''Рёбрами''''' симплекса называются отрезки, соединяющие его вершины{{sfn|Болтянский|1973|с=211}}. |
||
* '''Гранями''' размерности ''s'' симплекса называются ''s''-мерные симплексы, остовами которых служат [[подмножество|подмножества]] остова исходного симплекса<ref name=Baladze>{{книга|автор=Баладзе Д. О. |часть=Комплекс|заглавие=Математическая энциклопедия. Т. 2|ссылка=http://eqworld.ipmnet.ru/ru/library/books/Vinogradov_MatEnc_t2.djvu|ответственный=Гл. ред. [[Виноградов, Иван Матвеевич|И. М. Виноградов]]|место=М.|издательство=[[Большая Российская энциклопедия (издательство)|Советская энциклопедия]]|год=1984}} — 1104 стб. — Стб. 995—1101.</ref>. |
* '''''Гранями''''' размерности ''s'' симплекса называются ''s''-мерные симплексы, остовами которых служат [[подмножество|подмножества]] остова исходного симплекса<ref name=Baladze>{{книга|автор=Баладзе Д. О. |часть=Комплекс|заглавие=Математическая энциклопедия. Т. 2|ссылка=http://eqworld.ipmnet.ru/ru/library/books/Vinogradov_MatEnc_t2.djvu|ответственный=Гл. ред. [[Виноградов, Иван Матвеевич|И. М. Виноградов]]|место=М.|издательство=[[Большая Российская энциклопедия (издательство)|Советская энциклопедия]]|год=1984|archive-date=2012-11-20|archive-url=https://web.archive.org/web/20121120171156/http://eqworld.ipmnet.ru/ru/library/books/Vinogradov_MatEnc_t2.djvu}} — 1104 стб. — Стб. 995—1101.</ref>. |
||
* Симплекс называют '''ориентированным''', если его остов представляет собой [[вполне упорядоченное множество]]; при этом считается, что порядки, отличающиеся друг от друга [[чётная перестановка|чётной перестановкой]] вершин, задают |
* Симплекс называют '''''ориентированным''''', если его остов представляет собой [[вполне упорядоченное множество]]; при этом считается, что порядки, отличающиеся друг от друга [[чётная перестановка|чётной перестановкой]] вершин, '''''задают одинаковую''''' (под '''''ориентированным <math>0</math>-симплексом''''' понимается точка, которой приписан знак: «плюс» или «минус»)<ref name=Baladze/><ref>{{книга|автор=[[Рудин, Уолтер|Рудин У.]] |заглавие=Основы математического анализа. 2-е изд|место=М.|издательство=[[Мир (издательство)|Мир]]|год=1976|страниц=319}} — С. 257—258.</ref>. |
||
* Симплекс, лежащий в [[евклидово пространство|евклидовом пространстве]], называется '''правильным''', если все его рёбра имеют одинаковую длину<ref name=Parks>{{книга|автор=Parks H. R., Wills D. C. |часть=An Elementary Calculation of the Dihedral Angle of the Regular ''n''-Simplex|ссылка часть=https://www.jstor.org/stable/3072403?seq=1#page_scan_tab_contents|заглавие=''The American Mathematical Monthly'', 2002, '''109''' (8)}} — P. 756—758. — {{DOI|10.2307/3072403}}.</ref>. |
* Симплекс, лежащий в [[евклидово пространство|евклидовом пространстве]], называется '''''правильным''''', если все его рёбра имеют одинаковую длину<ref name=Parks>{{книга|автор=Parks H. R., Wills D. C. |часть=An Elementary Calculation of the Dihedral Angle of the Regular ''n''-Simplex|ссылка часть=https://www.jstor.org/stable/3072403?seq=1#page_scan_tab_contents|заглавие=''The American Mathematical Monthly'', 2002, '''109''' (8)}} — P. 756—758. — {{DOI|10.2307/3072403}}.</ref>. |
||
=== Стандартный симплекс === |
=== Стандартный симплекс === |
||
[[Файл:2D-simplex.svg|right|200px|thumb|Зелёный треугольник — стандартный 2-симплекс]] |
[[Файл:2D-simplex.svg|right|200px|thumb|Зелёный треугольник — стандартный 2-симплекс]] |
||
''' |
'''''Стандартный <math>n</math>-симплекс''''' — это подмножество [[арифметическое пространство|арифметического пространства]] <math>\mathbb{R}^{n+1}</math>, определяемое как{{sfn|Кострикин и Манин|1986|с=200—201}} |
||
: <math>\Delta^n = \left\{ (t_0, \dots, t_n) : \left(\sum_{i=0}^n t_i = 1\right) \wedge (\forall i \; t_i \geqslant 0) \right\}.</math> |
: <math>\Delta^n = \left\{ (t_0, \dots, t_n) : \left(\sum_{i=0}^n t_i = 1\right) \wedge (\forall i \; t_i \geqslant 0) \right\}.</math> |
||
Строка 28: | Строка 28: | ||
: ''e''<sub>''n''</sub> = (0, 0, …, 1). |
: ''e''<sub>''n''</sub> = (0, 0, …, 1). |
||
Существует [[каноничность|каноническое]] [[взаимно-однозначное отображение]] стандартного |
Существует [[каноничность|каноническое]] [[взаимно-однозначное отображение]] стандартного <math>n</math>-симплекса в любой другой <math>n</math>-симплекс Δ с координатами вершин <math>(v_0, v_1, \dots, v_n)</math>: |
||
: <math>(t_0, \dots, t_n) \mapsto \sum_i t_i v_i.</math> |
: <math>(t_0, \dots, t_n) \mapsto \sum_i t_i v_i.</math> |
||
Значения <math>t_i</math> для данной точки симплекса |
Значения <math>t_i</math> для данной точки симплекса Δ называются её [[барицентрические координаты|барицентрическими координатами]]{{sfn|Александров|1968|с=355}}. |
||
== Свойства == |
== Свойства == |
||
Строка 73: | Строка 73: | ||
Все эти фигуры обладают тремя общими свойствами. |
Все эти фигуры обладают тремя общими свойствами. |
||
# В соответствии с определением, число вершин у каждой фигуры на единицу больше размерности пространства. |
# В соответствии с определением, число вершин у каждой фигуры на единицу больше размерности пространства. |
||
# Существует общее правило преобразования симплексов низшей размерности в симплексы высшей размерности. Оно заключается в том, что из некоторой точки симплекса проводят [[луч (геометрия)|луч]], не лежащий в [[аффинная оболочка|аффинной оболочке]] данного симплекса, и на этом луче выбирают новую вершину, которую соединяют [[ребро|рёбрами]] со всеми вершинами исходного симплекса. |
# Существует общее правило преобразования симплексов низшей размерности в симплексы высшей размерности. Оно заключается в том, что из некоторой точки симплекса проводят [[луч (геометрия)|луч]], не лежащий в [[аффинная оболочка|аффинной оболочке]] данного симплекса, и на этом луче выбирают новую вершину, которую соединяют [[ребро (геометрия)|рёбрами]] со всеми вершинами исходного симплекса. |
||
# Как следует из описанной в пункте 2 процедуры, любая вершина симплекса соединена рёбрами со всеми остальными вершинами. |
# Как следует из описанной в пункте 2 процедуры, любая вершина симплекса соединена рёбрами со всеми остальными вершинами. |
||
Строка 158: | Строка 158: | ||
== Соотношения в правильном симплексе == |
== Соотношения в правильном симплексе == |
||
Для правильного ''n''-мерного симплекса обозначим: |
|||
* |
* <math>a</math> — длина стороны; |
||
* |
* <math>H_n</math> — высота; |
||
* <math>V_n</math> — объём; |
|||
⚫ | |||
* |
* <math>R_n</math> — радиус описанной сферы; |
||
⚫ | |||
* |
* <math>\alpha_n</math> — [[двугранный угол]]. |
||
Тогда |
Тогда |
||
Строка 171: | Строка 172: | ||
* <math>r_n = \frac{a}{\sqrt{2n(n+1)}}= \frac{R_n}{n}</math> |
* <math>r_n = \frac{a}{\sqrt{2n(n+1)}}= \frac{R_n}{n}</math> |
||
* <math>\cos \alpha = \frac{1}{n}</math> <ref name=Parks/> |
* <math>\cos \alpha = \frac{1}{n}</math> <ref name=Parks/> |
||
* <math>R_n = H_n \frac{n}{n |
* <math>R_n = H_n \frac{n}{n+1}</math> |
||
* <math>a^2 = H_n^2 + R_{n-1}^2</math> |
* <math>a^2 = H_n^2 + R_{n-1}^2</math> |
||
* <math>V_n = \frac{1}{n}V_{n-1}H_n </math> |
* <math>V_n = \frac{1}{n}V_{n-1}H_n </math> |
||
Строка 215: | Строка 216: | ||
== Симплексы в топологии == |
== Симплексы в топологии == |
||
'''Топологическим симплексом''' называют подмножество [[топологическое пространство|топологического пространства]], которое [[гомеоморфизм|гомеоморфно]] симплексу некоторого аффинного пространства (или, что то же самое, стандартному симплексу соответствующей размерности). Понятие топологического симплекса лежит в основе теории симплициальных комплексов ([[симплициальный комплекс]] — это топологическое пространство, представленное как [[объединение множеств|объединение]] топологических симплексов, образующих [[триангуляция (геометрия)|триангуляцию]] данного пространства)<ref>{{книга|автор=Хохлов А. В. |часть=Симплициальное пространство|заглавие=Математическая энциклопедия. Т. 4|ссылка=http://eqworld.ipmnet.ru/ru/library/books/Vinogradov_MatEnc_t4.djvu|ответственный=Гл. ред. [[Виноградов, Иван Матвеевич|И. М. Виноградов]]|место=М.|издательство=[[Большая Российская энциклопедия (издательство)|Советская энциклопедия]]|год=1984}} — 1216 стб. — Стб. 1168.</ref>. |
'''Топологическим симплексом''' называют подмножество [[топологическое пространство|топологического пространства]], которое [[гомеоморфизм|гомеоморфно]] симплексу некоторого аффинного пространства (или, что то же самое, стандартному симплексу соответствующей размерности). Понятие топологического симплекса лежит в основе теории симплициальных комплексов ([[симплициальный комплекс]] — это топологическое пространство, представленное как [[объединение множеств|объединение]] топологических симплексов, образующих [[триангуляция (геометрия)|триангуляцию]] данного пространства)<ref>{{книга|автор=Хохлов А. В. |часть=Симплициальное пространство|заглавие=Математическая энциклопедия. Т. 4|ссылка=http://eqworld.ipmnet.ru/ru/library/books/Vinogradov_MatEnc_t4.djvu|ответственный=Гл. ред. [[Виноградов, Иван Матвеевич|И. М. Виноградов]]|место=М.|издательство=[[Большая Российская энциклопедия (издательство)|Советская энциклопедия]]|год=1984|archive-date=2022-01-21|archive-url=https://web.archive.org/web/20220121054322/http://eqworld.ipmnet.ru/ru/library/books/Vinogradov_MatEnc_t4.djvu}} — 1216 стб. — Стб. 1168.</ref>. |
||
== См. также == |
== См. также == |
||
{{колонки}} |
|||
* [[Барицентрические координаты]] |
* [[Барицентрические координаты]] |
||
* [[Барицентрическое подразделение]] |
* [[Барицентрическое подразделение]] |
||
Строка 226: | Строка 228: | ||
* [[Теорема о сумме углов треугольника]] |
* [[Теорема о сумме углов треугольника]] |
||
* [[Триангуляция (геометрия)]] |
* [[Триангуляция (геометрия)]] |
||
{{колонки/конец}} |
|||
== Примечания == |
== Примечания == |
||
Строка 231: | Строка 234: | ||
== Литература == |
== Литература == |
||
* {{книга|автор=[[Александров, Павел Сергеевич| |
* {{книга|автор=[[Александров, Павел Сергеевич|П. С. Александров]]|заглавие=Комбинаторная топология|место=М.-Л.|издательство=[[ГИТТЛ]]|год=1947|страниц=660|ref=Александров}} |
||
* {{книга|автор=[[Александров, Павел Сергеевич| |
* {{книга|автор=[[Александров, Павел Сергеевич|П. С. Александров]]|заглавие=Лекции по аналитической геометрии|место=М.|издательство=[[Наука (издательство)|Наука]]|год=1968|страниц=912|ref=Александров}} |
||
* {{книга|автор=[[Александров, Павел Сергеевич| |
* {{книга|автор=[[Александров, Павел Сергеевич|П. С. Александров]], Б. А. Пасынков|заглавие=Введение в теорию размерности. Введение в теорию топологических пространств и общую теорию размерности|место=М.|издательство=[[Наука (издательство)|Наука]]|год=1973|страниц=576|ref=Александров и Пасынков}} |
||
* {{книга|автор=[[Болтянский, Владимир Григорьевич| |
* {{книга|автор=[[Болтянский, Владимир Григорьевич|В. Г. Болтянский]] |заглавие=Оптимальное управление дискретными системами|место=М.|издательство=[[Наука (издательство)|Наука]]|год=1973|страниц=448|ref=Болтянский}} |
||
* {{книга|автор=[[Кострикин, Алексей Иванович| |
* {{книга|автор=[[Кострикин, Алексей Иванович|А. И. Кострикин]], [[Манин, Юрий Иванович|Ю. И. Манин]]|заглавие=Линейная алгебра и геометрия. 2-е изд|место=М.|издательство=[[Наука (издательство)|Наука]]|год=1986|страниц=304|ref=Кострикин и Манин}} |
||
* {{книга|автор=[[Понтрягин, Лев Семёнович| |
* {{книга|автор=[[Понтрягин, Лев Семёнович|Л. С. Понтрягин]]|заглавие=Основы комбинаторной топологии|место=М.-Л.|издательство=[[ГИТТЛ]]|год=1947|страниц=142|ref=Понтрягин}} — С. 23—31. |
||
== Ссылки == |
== Ссылки == |
||
* {{Из БСЭ|заглавие= |
* {{Из БСЭ|заглавие=Симплекс}} |
||
{{Внешние ссылки}} |
|||
{{Размерность}} |
|||
[[Категория:Многомерная евклидова геометрия]] |
[[Категория:Многомерная евклидова геометрия]] |
||
[[Категория:Геометрические фигуры]] |
[[Категория:Геометрические фигуры]] |
Текущая версия от 16:14, 24 октября 2024
Си́мплекс или n-ме́рный тетра́эдр (от лат. simplex ‘простой’) — геометрическая фигура, являющаяся n-мерным обобщением треугольника.
Определение
[править | править код]Симплекс (точнее, n-симплекс, где число n называется размерностью симплекса) — это выпуклая оболочка n + 1 точки аффинного пространства (размерности n или больше), которые предполагаются аффинно независимыми (то есть не лежат в подпространстве размерности n − 1). Эти точки называются вершинами симплекса[1][2].
Симплекс может быть охарактеризован как множество всевозможных выпуклых комбинаций своих вершин :
Связанные определения
[править | править код]- Открытым симплексом называется множество всевозможных барицентрических комбинаций своих вершин с положительными коэффициентами (при этом симплекс с теми же вершинами, удовлетворяющий определению из предыдущего раздела, именуют также замкнутым симплексом; в соответствии с терминологией общей топологии, замкнутый симплекс есть замыкание соответствующего открытого симплекса, а этот открытый симплекс есть открытое ядро замкнутого симплекса)[1][3].
- Остовом симплекса называется множество всех его вершин[4].
- Рёбрами симплекса называются отрезки, соединяющие его вершины[5].
- Гранями размерности s симплекса называются s-мерные симплексы, остовами которых служат подмножества остова исходного симплекса[6].
- Симплекс называют ориентированным, если его остов представляет собой вполне упорядоченное множество; при этом считается, что порядки, отличающиеся друг от друга чётной перестановкой вершин, задают одинаковую (под ориентированным -симплексом понимается точка, которой приписан знак: «плюс» или «минус»)[6][7].
- Симплекс, лежащий в евклидовом пространстве, называется правильным, если все его рёбра имеют одинаковую длину[8].
Стандартный симплекс
[править | править код]Стандартный -симплекс — это подмножество арифметического пространства , определяемое как[9]
Его вершинами являются точки[9]
- e0 = (1, 0, …, 0),
- e1 = (0, 1, …, 0),
- …
- en = (0, 0, …, 1).
Существует каноническое взаимно-однозначное отображение стандартного -симплекса в любой другой -симплекс Δ с координатами вершин :
Значения для данной точки симплекса Δ называются её барицентрическими координатами[3].
Свойства
[править | править код]- n-мерный симплекс имеет вершин, любые из которых образуют k-мерную грань.
- В частности, число k-мерных граней в n-симплексе равно биномиальному коэффициенту
- В частности, число граней старшей размерности совпадает с количеством вершин и равно .
- Ориентированный объём n-симплекса в n-мерном евклидовом пространстве можно определить по формуле
- Определитель Кэли — Менгера позволяет вычислить объём симплекса, зная длины его рёбер:
- где — расстояние между i-й и j-й вершинами, n — размерность пространства. Эта формула является обобщением формулы Герона для треугольников.
- Объём правильного n-симплекса с единичной стороной равен .
- Радиус описанной n-мерной сферы удовлетворяет соотношению
- где — объём симплекса, и
Построение
[править | править код]Если размерность пространства равна n, то через любые n его точек можно провести гиперплоскость, и существуют множества из n + 1 точки, через которые гиперплоскость провести нельзя. Таким образом, n + 1 — минимальное число таких точек n-мерного пространства, которые не лежат в одной гиперплоскости; эти точки могут служить вершинами n-мерного многогранника[10].
Простейший n-мерный многогранник с количеством вершин n + 1 как раз и называется симплексом (принято также название «n-мерный тетраэдр»). В пространствах низшей размерности этому определению соответствуют такие фигуры[11]:
- 0-симплекс (точка) — 1 вершина;
- 1-симплекс (отрезок) — 2 вершины;
- 2-симплекс (треугольник) — 3 вершины;
- 3-симплекс (тетраэдр) — 4 вершины.
Все эти фигуры обладают тремя общими свойствами.
- В соответствии с определением, число вершин у каждой фигуры на единицу больше размерности пространства.
- Существует общее правило преобразования симплексов низшей размерности в симплексы высшей размерности. Оно заключается в том, что из некоторой точки симплекса проводят луч, не лежащий в аффинной оболочке данного симплекса, и на этом луче выбирают новую вершину, которую соединяют рёбрами со всеми вершинами исходного симплекса.
- Как следует из описанной в пункте 2 процедуры, любая вершина симплекса соединена рёбрами со всеми остальными вершинами.
Описанная сфера
[править | править код]Вокруг любого n-симплекса в евклидовом пространстве можно описать n-сферу.
Для 1-симплекса это утверждение очевидно. Описанная 1-сфера будет представлять собой две равноудалённые от центра отрезка точки, совпадающие с концами отрезка, и её радиус будет составлять R = a/2. Добавим к 1-симплексу ещё одну точку и попробуем описать вокруг них 2-сферу.
Построим 2-сферу s0 радиусом a/2 таким образом, чтобы отрезок АВ был её диаметром. Если точка С находится за пределами окружности s0, то, увеличивая радиус окружности и смещая её в сторону точки С, можно добиться того, что все три точки окажутся на окружности. Если же точка С лежит внутри окружности s0, то подогнать окружность под эту точку можно, увеличивая её радиус и смещая в сторону, противоположную точке С. Как видно из рисунка, сделать это можно в любом случае, когда точка С не лежит на одной прямой с точками А и В. Не является помехой и несимметричное расположение точки С относительно отрезка АВ.
Рассматривая общий случай, предположим, что существует (n − 1)-сфера Sn−1 радиуса r, описанная вокруг некоторой (n–1)-мерной фигуры. Поместим центр сферы в начало координат. Уравнение сферы будет иметь вид
Построим n-сферу с центром в точке (0, 0, 0, ... 0, hS) и радиусом R, причём
Уравнение этой сферы
или
Подставив в уравнение (2) xn = 0, получим уравнение (1). Таким образом, при любом hS сфера Sn−1 является подмножеством сферы Sn, а именно — её сечением плоскостью xn = 0.
Предположим, что точка С имеет координаты (x1, x2, x3, ..., xn ). Преобразуем уравнение (2) к виду
и подставим в него координаты точки С:
Выражение в левой части представляет собой квадрат расстояния RC от начала координат до точки C, что позволяет привести последнее уравнение к виду
откуда можно выразить параметр hS:
Очевидно, что hS существует при любых RC, Xn и r, кроме Xn = 0. Это значит, что если точка С не лежит в плоскости сферы Sn−1, всегда можно найти такой параметр hS, что на сфере Sn c центром (0, 0, 0, ..., hS) будут лежать и сфера Sn−1, и точка С. Таким образом, вокруг любых n + 1 точек можно описать n-сферу, если n из этих точек лежат на одной (n − 1)-сфере, и последняя точка не лежит с ними в одной (n − 1)-плоскости.
Рассуждая по индукции, можно утверждать, что n-сферу можно описать вокруг любых n + 1 точек, если они не лежат в одной (n − 1)-плоскости.
Число граней симплекса
[править | править код]Симплекс имеет n + 1 вершин, каждая из которых соединена рёбрами со всеми остальными вершинами.
Поскольку все вершины симплекса соединены между собой, то тем же свойством обладает и любое подмножество его вершин. Это значит, что любое подмножество из L + 1 вершин симплекса определяют его L-мерную грань, и эта грань сама является L-симплексом. Тогда для симплекса число L-мерных граней равно числу способов выбрать L + 1 вершину из полного набора n + 1 вершин.
Обозначим символом К(L, n) число L-мерных граней в n-многограннике; тогда для n-симплекса
где — число сочетаний из n по k.
В частности, число граней старшей размерности равно числу вершин и равно n + 1:
Соотношения в правильном симплексе
[править | править код]Для правильного n-мерного симплекса обозначим:
- — длина стороны;
- — высота;
- — объём;
- — радиус описанной сферы;
- — радиус вписанной сферы;
- — двугранный угол.
Тогда
Формулы для правильного симплекса
[править | править код]Число L-мерных граней | |||||
Высота | |||||
Объём | |||||
Радиус описанной сферы | |||||
Радиус вписанной сферы | |||||
Двугранный угол |
Симплексы в топологии
[править | править код]Топологическим симплексом называют подмножество топологического пространства, которое гомеоморфно симплексу некоторого аффинного пространства (или, что то же самое, стандартному симплексу соответствующей размерности). Понятие топологического симплекса лежит в основе теории симплициальных комплексов (симплициальный комплекс — это топологическое пространство, представленное как объединение топологических симплексов, образующих триангуляцию данного пространства)[12].
См. также
[править | править код]Примечания
[править | править код]- ↑ 1 2 Александров и Пасынков, 1973, с. 197—198.
- ↑ Залгаллер В. А. . Симплекс // Математическая энциклопедия. Т. 4 / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1984. Архивировано 21 января 2022 года. — 1216 стб. — Стб. 1151.
- ↑ 1 2 Александров, 1968, с. 355.
- ↑ Александров и Пасынков, 1973, с. 198.
- ↑ Болтянский, 1973, с. 211.
- ↑ 1 2 Баладзе Д. О. . Комплекс // Математическая энциклопедия. Т. 2 / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1984. Архивировано 20 ноября 2012 года. — 1104 стб. — Стб. 995—1101.
- ↑ Рудин У. . Основы математического анализа. 2-е изд. — М.: Мир, 1976. — 319 с. — С. 257—258.
- ↑ 1 2 Parks H. R., Wills D. C. . An Elementary Calculation of the Dihedral Angle of the Regular n-Simplex // The American Mathematical Monthly, 2002, 109 (8). — P. 756—758. — doi:10.2307/3072403.
- ↑ 1 2 Кострикин и Манин, 1986, с. 200—201.
- ↑ Александров, 1968, с. 353—355.
- ↑ Кострикин и Манин, 1986, с. 201.
- ↑ Хохлов А. В. . Симплициальное пространство // Математическая энциклопедия. Т. 4 / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1984. Архивировано 21 января 2022 года. — 1216 стб. — Стб. 1168.
Литература
[править | править код]- П. С. Александров. Комбинаторная топология. — М.—Л.: ГИТТЛ, 1947. — 660 с.
- П. С. Александров. Лекции по аналитической геометрии. — М.: Наука, 1968. — 912 с.
- П. С. Александров, Б. А. Пасынков. Введение в теорию размерности. Введение в теорию топологических пространств и общую теорию размерности. — М.: Наука, 1973. — 576 с.
- В. Г. Болтянский . Оптимальное управление дискретными системами. — М.: Наука, 1973. — 448 с.
- А. И. Кострикин, Ю. И. Манин. Линейная алгебра и геометрия. 2-е изд. — М.: Наука, 1986. — 304 с.
- Л. С. Понтрягин. Основы комбинаторной топологии. — М.—Л.: ГИТТЛ, 1947. — 142 с. — С. 23—31.
Ссылки
[править | править код]- Симплекс — статья из Большой советской энциклопедии.