Алгебраическая система: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Mx1024 (обсуждение | вклад) не путать |
Mx1024 (обсуждение | вклад) где такое понятие называется алгебраической структурой? |
||
Строка 1: | Строка 1: | ||
{{не путать|Решётка (алгебра)|синонимом термина решётка}} |
{{не путать|Решётка (алгебра)|синонимом термина решётка}} |
||
'''Алгебраическая система''' (или '''алгебраическая структура''') в [[Универсальная алгебра|универсальной алгебре]] — [[множество]] <math>G</math> (''носитель'') с заданным на нём набором [[Операция (математика)|операций]] и [[Отношение (теория множеств)|отношений]] (''сигнатура''), удовлетворяющим некоторой системе [[аксиома|аксиом]]. Алгебраическая система с пустым множеством отношений называется [[Алгебра (универсальная алгебра)|алгеброй]], а система с пустым множеством операций — моделью. |
'''Алгебраическая система''' (или '''алгебраическая структура'''{{источник}}) в [[Универсальная алгебра|универсальной алгебре]] — [[множество]] <math>G</math> (''носитель'') с заданным на нём набором [[Операция (математика)|операций]] и [[Отношение (теория множеств)|отношений]] (''сигнатура''), удовлетворяющим некоторой системе [[аксиома|аксиом]]. Алгебраическая система с пустым множеством отношений называется [[Алгебра (универсальная алгебра)|алгеброй]], а система с пустым множеством операций — моделью. |
||
''n''-арная операция на ''G'' — это [[Функция (математика)|отображение]] [[Прямое произведение|прямого произведения]] ''n'' экземпляров множества в само множество <math>G^n \to G</math>. По определению, ''0''-арная операция — это просто выделенный элемент множества. Чаще всего рассматриваются [[унарная операция|унарные]] и [[бинарная операция|бинарные]] операции, поскольку с ними легче работать. Но в связи с нуждами [[Топология|топологии]], [[Алгебра|алгебры]], [[Комбинаторика|комбинаторики]] постепенно накапливается техника работы с операциями большей [[арность|арности]], здесь в качестве примера можно привести теорию [[Операда|операд]] (клонов полилинейных операций) и алгебр над ними ([[Мультиоператорная алгебра|мультиоператорных алгебр]]). |
''n''-арная операция на ''G'' — это [[Функция (математика)|отображение]] [[Прямое произведение|прямого произведения]] ''n'' экземпляров множества в само множество <math>G^n \to G</math>. По определению, ''0''-арная операция — это просто выделенный элемент множества. Чаще всего рассматриваются [[унарная операция|унарные]] и [[бинарная операция|бинарные]] операции, поскольку с ними легче работать. Но в связи с нуждами [[Топология|топологии]], [[Алгебра|алгебры]], [[Комбинаторика|комбинаторики]] постепенно накапливается техника работы с операциями большей [[арность|арности]], здесь в качестве примера можно привести теорию [[Операда|операд]] (клонов полилинейных операций) и алгебр над ними ([[Мультиоператорная алгебра|мультиоператорных алгебр]]). |
Версия от 12:05, 21 октября 2017
Алгебраическая система (или алгебраическая структура[источник?]) в универсальной алгебре — множество (носитель) с заданным на нём набором операций и отношений (сигнатура), удовлетворяющим некоторой системе аксиом. Алгебраическая система с пустым множеством отношений называется алгеброй, а система с пустым множеством операций — моделью.
n-арная операция на G — это отображение прямого произведения n экземпляров множества в само множество . По определению, 0-арная операция — это просто выделенный элемент множества. Чаще всего рассматриваются унарные и бинарные операции, поскольку с ними легче работать. Но в связи с нуждами топологии, алгебры, комбинаторики постепенно накапливается техника работы с операциями большей арности, здесь в качестве примера можно привести теорию операд (клонов полилинейных операций) и алгебр над ними (мультиоператорных алгебр).
Для алгебраических систем естественным образом определяются морфизмы как отображения, сохраняющие операцию. Таким образом определяются категории групп, колец, R-модулей и т. п.
Если множество обладает структурой топологического пространства, и операции являются непрерывными, то его называют топологической алгебраической системой. Так, в топологической группе операции умножения и взятия обратного элемента являются непрерывными.
Не все алгебраические конструкции описываются алгебраическими системами, в качестве примера таковых можно упомянуть коалгебры, биалгебры, алгебры Хопфа и комодули над ними.
Основные классы алгебраических систем
- Множество можно считать вырожденной алгебраической системой с пустым набором операций и отношений[1].
Группоиды, полугруппы, группы
- Группоид — множество с одной бинарной операцией , обычно называемой умножением.
- Правая квазигруппа — группоид, в котором возможно правое деление, то есть уравнение имеет единственное решение для любых и .
- Квазигруппа — одновременно правая и левая квазигруппа.
- Лупа — квазигруппа с нейтральным элементом , таким, что .
- Полугруппа — группоид, в котором умножение ассоциативно: .
- Моноид — полугруппа с нейтральным элементом.
- Группа — моноид, в котором для каждого элемента a группы можно определить обратный элемент a−1, такой, что .
- Абелева группа — группа, в которой операция коммутативна, то есть, . Операцию в абелевой группе часто называют сложением ('+').
Кольца
- Кольцо — структура с двумя бинарными операциями (абелева группа по сложению с заданной второй ассоциативной бинарной операцией — умножением), в которой выполняется закон дистрибутивности: .
- Коммутативное кольцо — кольцо с коммутативным умножением.
- Целостное кольцо — кольцо, в котором произведение двух ненулевых элементов не равно нулю.
- Тело — кольцо, в котором ненулевые элементы образуют группу по умножению.
- Поле — коммутативное кольцо, являющееся телом.
- Полукольцо — похоже на кольцо, но без обратимости сложения.
- Почтикольцо — также обобщение кольца, отличающееся от обычного кольца отсутствием требования коммутативности сложения и отсутствием требования дистрибутивности умножения по сложению (левой или правой)
Алгебры
- Алгебра — линейное пространство с билинейной дистрибутивной операцией умножения, иначе говоря, кольцо с согласованной структурой линейного пространства
- Ассоциативная алгебра — алгебра с ассоциативным умножением
- Алгебра термов
- Коммутативная алгебра
- Градуированная алгебра
- Алгебра Ли — алгебра с антикоммутативным умножением (обычно обозначаемым ), удовлетворяющим тождеству Якоби
- Алгебра Лейбница — алгебра с умножением (обычно обозначаемым ), удовлетворяющим тождеству Якоби
- Алгебра Йордана — коммутативная алгебра с тождеством слабой ассоциативности:
- Алгебра некоммутативная йорданова — некоммутативная алгебра с тождеством слабой ассоциативности: и тождеством эластичности:
- Альтернативная алгебра — алгебра с тождествами
- Алгебра Мальцева — антикоммутативная алгебра с тождеством:
- Коммутантно-ассоциативная алгебра
- Алгебра над операдой — один из наиболее общих видов алгебраических систем. Здесь сама операда играет роль сигнатуры алгебры.
Решётки
- Решётка — структура с двумя коммутативными, ассоциативными, идемпотентными операциями, удовлетворяющими закону поглощения.
- Булева алгебра.
Примечания
- ↑ Курош А. Г. Общая алгебра. — М.: Наука, 1974. С.15
Литература
- П. Кон «Универсальная алгебра», — М.: Мир, 1969, 351 с
- А. И. Мальцев «Алгебраические системы», — М., Наука, 1970 г., 392 стр. с илл.
- «Общая алгебра, в 2-х томах (Серия: Справочная математическая библиотека)», В. А. Артамонов и др., под редакцией Л. А. Скорнякова, — М.: Наука, Физматлит, 1990—1991, 592 с + 480 с.