Ортогональное преобразование: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Метка: отменено
Строка 11: Строка 11:
* В ортонормированном базисе ортогональным преобразованиям (и только им) соответствуют [[ортогональная матрица|ортогональные матрицы]]. Таким образом, критерием ортогональности матрицы <math>A</math> является равенство (*), где <math>A^*</math> — транспонированная, а <math>A^{-1}</math> — обратная матрицы.
* В ортонормированном базисе ортогональным преобразованиям (и только им) соответствуют [[ортогональная матрица|ортогональные матрицы]]. Таким образом, критерием ортогональности матрицы <math>A</math> является равенство (*), где <math>A^*</math> — транспонированная, а <math>A^{-1}</math> — обратная матрицы.
* [[Собственные значения]] ортогональных преобразований по модулю равны <math>1</math>, а [[собственные векторы]] (вообще говоря, [[Комплексное число|комплексные]]), отвечающие различным собственным значениям, ортогональны. Например, собственные значения матрицы <math> \begin{bmatrix}
* [[Собственные значения]] ортогональных преобразований по модулю равны <math>1</math>, а [[собственные векторы]] (вообще говоря, [[Комплексное число|комплексные]]), отвечающие различным собственным значениям, ортогональны. Например, собственные значения матрицы <math> \begin{bmatrix}
\cos(\theta) & -\sin(\theta) \\
\cos \varphi & -\sin \varphi \\
\sin(\theta) & \cos(\theta)
\sin \varphi & \cos \varphi
\end{bmatrix} </math> равны <math> \cos(\theta) \pm i\cdot \sin(\theta) </math>, а собственные векторы равны <math> \begin{bmatrix} 1 \\ \mp i \end{bmatrix} </math>.
\end{bmatrix} </math> равны <math> \cos \varphi \pm i\cdot \sin \varphi </math>, а собственные векторы равны <math> \begin{bmatrix} 1 \\ \mp i \end{bmatrix} </math>.
* [[Определитель]] ортогонального преобразования равен <math> 1</math> ('''собственное ортогональное преобразование''') или <math> -1</math> ('''несобственное ортогональное преобразование''').
* [[Определитель]] ортогонального преобразования равен <math> 1</math> ('''собственное ортогональное преобразование''') или <math> -1</math> ('''несобственное ортогональное преобразование''').
* В произвольном <math> n</math>-мерном евклидовом пространстве ортогональное преобразование является композицией конечного числа [[Отражение (геометрия)|отражений]].
* В произвольном <math> n</math>-мерном евклидовом пространстве ортогональное преобразование является композицией конечного числа [[Отражение (геометрия)|отражений]].

Версия от 07:41, 24 мая 2020

Ортогональное преобразование — линейное преобразование евклидова пространства , сохраняющее длины или (что эквивалентно) скалярное произведение векторов. Это означает, что для любых двух векторов выполняется равенство

где треугольными скобками обозначено скалярное произведение в пространстве .

Свойства

  • Ортогональные преобразования (и только они) переводят один ортонормированный базис евклидова пространства в другой ортонормированный.
  • Необходимым и достаточным условием ортогональности линейного преобразования является равенство
где  — сопряжённое, а  — обратное преобразования.
  • В ортонормированном базисе ортогональным преобразованиям (и только им) соответствуют ортогональные матрицы. Таким образом, критерием ортогональности матрицы является равенство (*), где  — транспонированная, а  — обратная матрицы.
  • Собственные значения ортогональных преобразований по модулю равны , а собственные векторы (вообще говоря, комплексные), отвечающие различным собственным значениям, ортогональны. Например, собственные значения матрицы равны , а собственные векторы равны .
  • Определитель ортогонального преобразования равен (собственное ортогональное преобразование) или (несобственное ортогональное преобразование).
  • В произвольном -мерном евклидовом пространстве ортогональное преобразование является композицией конечного числа отражений.
  • Множество всех ортогональных преобразований евклидова пространства образует группу относительно операции композиции — ортогональную группу данного евклидова пространства. Собственные ортогональные преобразования образуют нормальную подгруппу в этой группе (специальную ортогональную группу).

Размерность 2

В случае евклидовой плоскости всякое собственное ортогональное преобразование является поворотом на некоторый угол , и его матрица в любом ортонормированном базисе имеет вид Его собственные числа равны .

Размерность 3

В трёхмерном пространстве всякое собственное ортогональное преобразование есть поворот вокруг некоторой оси, а всякое несобственное — композиция поворота вокруг оси и отражения в перпендикулярной плоскости.

Размерность n

Имеет место следующая общая теорема:

Для каждого ортогонального преобразования евклидова -мерного пространства справедливо такое разложение

где все подпространства и попарно ортогональны и являются инвариантными подпространствами преобразования , причём:

  • ограничение на есть (тождественное преобразование),
  • ограничение на есть ,
  • все пространства двумерны (плоскости), и ограничение на есть поворот плоскости на угол .

В терминах матрицы преобразования эту теорему можно сформулировать следующим образом:

Для всякого ортогонального преобразования существует такой ортонормированный базис, в котором его матрица имеет блочно-диагональный вид:

где  — матрица поворота на угол (см. формулу выше), число единиц равно размерности подпространства и число минус единиц равно размерности подпространства .

Такая запись матрицы ортогонального преобразования иногда называется приведением к каноническому виду.

См. также

Литература

  • Мальцев А. И. Основы линейной алгебры. М.: Наука, 1975.
  • Гельфанд И. М. Лекции по линейной алгебре М.: Наука, 1971.
  • Фаддеев Д. К. Лекции по алгебре. М.: Наука, 1984.
  • В. А. Ильин, Э. Г. Позняк Линейная алгебра. — Физматлит, Москва, 1999.
  • Гантмахер Ф. Р. Теория матриц, — М.: Наука, 1966.
  • Гельфанд И. М., Линейная алгебра. Курс лекций.
  • Кострикин А. И., Манин Ю. И. Линейная алгебра и геометрия, — М.: Наука, 1986.
  • Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, — Физматлит, Москва, 2009.