Калибровка векторного потенциала: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Калибровка Лоренца: См. ЛЛ Т2 стр. 246
Калибровка Лоренца: исправлена формула: c на c^2
Строка 10: Строка 10:
=== Калибровка Лоренца ===
=== Калибровка Лоренца ===
'''Калибровка Лоренца'''<ref>Впервые предложена [[Лоренц, Людвиг Валентин|Людвигом В. Лоренцем]].</ref> — выбор [[векторный потенциал|векторного потенциала]] электромагнитного поля в виде
'''Калибровка Лоренца'''<ref>Впервые предложена [[Лоренц, Людвиг Валентин|Людвигом В. Лоренцем]].</ref> — выбор [[векторный потенциал|векторного потенциала]] электромагнитного поля в виде
: <math>\operatorname{div}\,\mathbf{A} + {1 \over c}{\partial \mathbf{\varphi} \over \partial t} = 0</math>, где <math>\varphi</math> — [[электростатический потенциал]].
: <math>\operatorname{div}\,\mathbf{A} + {1 \over c^2}{\partial \mathbf{\varphi} \over \partial t} = 0</math>, где <math>\varphi</math> — [[электростатический потенциал]].
Эта калибровка применяется для рассмотрения [[электродинамика|динамических задач]]. Калибровка Лоренца сохраняется при [[преобразования Лоренца|преобразованиях Лоренца]] и в ковариантной форме может быть записана как
Эта калибровка применяется для рассмотрения [[электродинамика|динамических задач]]. Калибровка Лоренца сохраняется при [[преобразования Лоренца|преобразованиях Лоренца]] и в ковариантной форме может быть записана как
: <math>{\partial A_{\mu} \over \partial x_{\mu}} = 0</math>
: <math>{\partial A_{\mu} \over \partial x_{\mu}} = 0</math>

Версия от 15:07, 8 ноября 2020

Калибро́вка ве́кторного потенциа́ла — наложение дополнительных условий, позволяющих однозначно вычислить векторный потенциал электромагнитного поля для решения тех или иных физических задач.

Примеры калибровок

Кулоновская калибровка

Кулоновская калибровка — выбор векторного потенциала магнитного поля в виде

Эта калибровка применяется для рассмотрения нерелятивистских магнитостатических задач.

Калибровка Лоренца

Калибровка Лоренца[1] — выбор векторного потенциала электромагнитного поля в виде

, где  — электростатический потенциал.

Эта калибровка применяется для рассмотрения динамических задач. Калибровка Лоренца сохраняется при преобразованиях Лоренца и в ковариантной форме может быть записана как

Калибровка Ландау

Калибровка Ландау — выбор векторного потенциала магнитного поля в виде , где  — магнитное поле, а  — единичный орт по направлению оси y.

Используется для удобства при решении уравнения Шрёдингера в магнитном поле, поскольку позволяет разделить переменные в декартовой системе координат и получить так называемые уровни Ландау.

Симметричная калибровка

Симметричная калибровка — выбор векторного потенциала магнитного поля в виде , где  — вектор магнитного поля, а  — радиус-вектор.

Калибровка Лондонов

Калибровка Лондонов — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условия

, где -- вектор нормали к поверхности сверхпроводника.

В этой калибровке упрощается запись уравнения Лондонов для линейной электродинамики сверхпроводников.

Калибровка Вейля

Калибровка Вейля — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условие

Другие названия — калибровка

Калибровка Пуанкаре

Калибровка Пуанкаре (мультиполярная калибровка) — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условие

Калибровка Фока — Швингера

Калибровка Фока — Швингера — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условие

,

или

Калибровка Дирака

См. также

Примечания

  1. Впервые предложена Людвигом В. Лоренцем.