Алгебраическая система: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Преамбула: пунктуация
Строка 3: Строка 3:
<math>n</math>-арная операция на <math>G</math> — это [[Функция (математика)|отображение]] [[Прямое произведение|прямого произведения]] <math>n</math> экземпляров множества в само множество <math>G^n \to G</math>. По определению, нульарная операция — это просто выделенный элемент множества. Чаще всего рассматриваются [[унарная операция|унарные]] и [[бинарная операция|бинарные]] операции, поскольку с ними легче работать, но в связи с нуждами [[Топология|топологии]], [[Алгебра|алгебры]], [[Комбинаторика|комбинаторики]] постепенно накапливается техника работы с операциями большей [[арность|арности]], здесь в качестве примера можно привести теорию [[Операда|операд]] (клонов полилинейных операций) и алгебр над ними ([[Мультиоператорная алгебра|мультиоператорных алгебр]]).
<math>n</math>-арная операция на <math>G</math> — это [[Функция (математика)|отображение]] [[Прямое произведение|прямого произведения]] <math>n</math> экземпляров множества в само множество <math>G^n \to G</math>. По определению, нульарная операция — это просто выделенный элемент множества. Чаще всего рассматриваются [[унарная операция|унарные]] и [[бинарная операция|бинарные]] операции, поскольку с ними легче работать, но в связи с нуждами [[Топология|топологии]], [[Алгебра|алгебры]], [[Комбинаторика|комбинаторики]] постепенно накапливается техника работы с операциями большей [[арность|арности]], здесь в качестве примера можно привести теорию [[Операда|операд]] (клонов полилинейных операций) и алгебр над ними ([[Мультиоператорная алгебра|мультиоператорных алгебр]]).


Понятие возникло из наблюдений за общностью конструкций, характерных для различных [[общая алгебра|общеалгебраических]] структур, таких как [[Группа (алгебра)|группы]], [[Кольцо (математика)|кольца]], [[Решётка (алгебра)|решётки]]; в частности, таковы конструкции [[подсистема (универсальная алгебра)|подсистемы]] (обобщающей понятия [[подгруппа|подгруппы]], [[подкольцо|подкольца]], [[подрешётка|подрешётки]] соответственно), [[гомоморфизм]]а, [[изоморфизм]]а, [[Факторсистема|факторсистемы]] (обобщающей соответственно конструкции [[Факторгруппа|фактогруппы]], [[Факторкольцо|факторкольца]], [[факторешётка|факторешётки]]). Эта общность изучается в самостоятельном разделе [[Общая алгебра|общей алгебры]] — [[универсальная алгебра|универсальной алгебре]], при этом получен ряд содержательных результатов, характерных для любых алгебраических систем, например, такова [[теорема о гомоморфзиме]], которая в случае алгебраической системы без заданных отношений — [[Алгебра (универсальная алгебра)|алгебры]], уточняется до [[теоремы об изоморфизме|теорем об изоморфизме]], известных ранее из [[Теория групп|теории групп]] и [[Теория колец|теории колец]].
Понятие возникло из наблюдений за общностью конструкций, характерных для различных [[общая алгебра|общеалгебраических]] структур, таких как [[Группа (алгебра)|группы]], [[Кольцо (математика)|кольца]], [[Решётка (алгебра)|решётки]]; в частности, таковы конструкции [[подсистема (универсальная алгебра)|подсистемы]] (обобщающей понятия [[подгруппа|подгруппы]], [[подкольцо|подкольца]], [[подрешётка|подрешётки]] соответственно), [[гомоморфизм]]а, [[изоморфизм]]а, [[Факторсистема|факторсистемы]] (обобщающей соответственно конструкции [[Факторгруппа|фактогруппы]], [[Факторкольцо|факторкольца]], [[факторешётка|факторешётки]]). Эта общность изучается в самостоятельном разделе [[Общая алгебра|общей алгебры]] — [[универсальная алгебра|универсальной алгебре]], при этом получен ряд содержательных результатов, характерных для любых алгебраических систем, например, такова [[теорема о гомоморфзиме]], которая в случае алгебраической системы без заданных отношений — [[Алгебра (универсальная алгебра)|алгебры]] уточняется до [[теоремы об изоморфизме|теорем об изоморфизме]], известных ранее из [[Теория групп|теории групп]] и [[Теория колец|теории колец]].


В математике с той или иной степенью строгости также используется понятие «[[Алгебраическая структура|алгебраической структуры]]», в частности, у [[Бурбаки]] оно формализовано как множество, наделённое операциями, при этом множество, наделённое отношениями (наличие которых возможно для алгебраической системы) уже рассматривается как математическая структура другого рода — [[структура порядка]]. Однако и не все алгебраические структуры описываются алгебраическими системами без дополнительных конструкций, в качестве примера таковых можно упомянуть [[Коалгебра|коалгебры]], [[Биалгебра|биалгебры]], [[Алгебра Хопфа|алгебры Хопфа]] и [[Комодуль|комодули]] над ними; кроме того, даже для определения таких классических структур, как [[Модуль над кольцом|модуля над кольцом]] или [[Алгебра над полем|алгебры над полем]], в универсальной алгебре используются такие искусственные конструкции, как определение для каждого элемента кольца (поля) унарной операции умножения на этот элемент.
В математике с той или иной степенью строгости также используется понятие «[[Алгебраическая структура|алгебраической структуры]]», в частности, у [[Бурбаки]] оно формализовано как множество, наделённое операциями, при этом множество, наделённое отношениями (наличие которых возможно для алгебраической системы) уже рассматривается как математическая структура другого рода — [[структура порядка]]. Однако и не все алгебраические структуры описываются алгебраическими системами без дополнительных конструкций, в качестве примера таковых можно упомянуть [[Коалгебра|коалгебры]], [[Биалгебра|биалгебры]], [[Алгебра Хопфа|алгебры Хопфа]] и [[Комодуль|комодули]] над ними; кроме того, даже для определения таких классических структур, как [[Модуль над кольцом|модуля над кольцом]] или [[Алгебра над полем|алгебры над полем]], в универсальной алгебре используются такие искусственные конструкции, как определение для каждого элемента кольца (поля) унарной операции умножения на этот элемент.

Версия от 14:23, 9 ноября 2020

Алгебраическая система в универсальной алгебре — непустое множество (носитель) с заданным на нём набором операций и отношений (сигнатурой). Алгебраическая система с пустым множеством отношений называется алгеброй, а система с пустым множеством операций — моделью.

-арная операция на  — это отображение прямого произведения экземпляров множества в само множество . По определению, нульарная операция — это просто выделенный элемент множества. Чаще всего рассматриваются унарные и бинарные операции, поскольку с ними легче работать, но в связи с нуждами топологии, алгебры, комбинаторики постепенно накапливается техника работы с операциями большей арности, здесь в качестве примера можно привести теорию операд (клонов полилинейных операций) и алгебр над ними (мультиоператорных алгебр).

Понятие возникло из наблюдений за общностью конструкций, характерных для различных общеалгебраических структур, таких как группы, кольца, решётки; в частности, таковы конструкции подсистемы (обобщающей понятия подгруппы, подкольца, подрешётки соответственно), гомоморфизма, изоморфизма, факторсистемы (обобщающей соответственно конструкции фактогруппы, факторкольца, факторешётки). Эта общность изучается в самостоятельном разделе общей алгебры — универсальной алгебре, при этом получен ряд содержательных результатов, характерных для любых алгебраических систем, например, такова теорема о гомоморфзиме, которая в случае алгебраической системы без заданных отношений — алгебры — уточняется до теорем об изоморфизме, известных ранее из теории групп и теории колец.

В математике с той или иной степенью строгости также используется понятие «алгебраической структуры», в частности, у Бурбаки оно формализовано как множество, наделённое операциями, при этом множество, наделённое отношениями (наличие которых возможно для алгебраической системы) уже рассматривается как математическая структура другого рода — структура порядка. Однако и не все алгебраические структуры описываются алгебраическими системами без дополнительных конструкций, в качестве примера таковых можно упомянуть коалгебры, биалгебры, алгебры Хопфа и комодули над ними; кроме того, даже для определения таких классических структур, как модуля над кольцом или алгебры над полем, в универсальной алгебре используются такие искусственные конструкции, как определение для каждого элемента кольца (поля) унарной операции умножения на этот элемент.

Основные классы алгебраических систем

  • Множество можно считать вырожденной алгебраической системой с пустым набором операций и отношений[1].

Группоиды, полугруппы, группы

  • Группоид — множество с одной бинарной операцией , обычно называемой умножением.
  • Правая квазигруппа — группоид, в котором возможно правое деление, то есть уравнение имеет единственное решение для любых и .
  • Квазигруппа — одновременно правая и левая квазигруппа.
  • Лупа — квазигруппа с нейтральным элементом , таким, что .
  • Полугруппа — группоид, в котором умножение ассоциативно: .
  • Моноид — полугруппа с нейтральным элементом.
  • Группа — моноид, в котором для каждого элемента a группы можно определить обратный элемент a−1, такой, что .
  • Абелева группа — группа, в которой операция коммутативна, то есть, . Операцию в абелевой группе часто называют сложением ('+').

Кольца

  • Кольцо — структура с двумя бинарными операциями (абелева группа по сложению с заданной второй ассоциативной бинарной операцией — умножением), в которой выполняется закон дистрибутивности: .
  • Коммутативное кольцо — кольцо с коммутативным умножением.
  • Целостное кольцо — кольцо, в котором произведение двух ненулевых элементов не равно нулю.
  • Тело — кольцо, в котором ненулевые элементы образуют группу по умножению.
  • Поле — коммутативное кольцо, являющееся телом.
  • Полукольцо — похоже на кольцо, но без обратимости сложения.
  • Почтикольцо — также обобщение кольца, отличающееся от обычного кольца отсутствием требования коммутативности сложения и отсутствием требования дистрибутивности умножения по сложению (левой или правой)

Алгебры

Решётки

Примечания

  1. Курош А. Г. Общая алгебра. — М.: Наука, 1974. С.15

Литература

  • Артамонов В. А. . Глава VI. Универсальные алгебры // Общая алгебра / Под общ. ред. Л. А. Скорнякова. — М.: Наука, 1991. — Т. 2. — С. 295—367. — 480 с. — (Справочная математическая библиотека). — 25 000 экз. — ISBN 5-9221-0400-4.
  • Кон П. Универсальная алгебра. — М.: Мир, 1969. — 351 с.
  • Мальцев А. И. Алгебраические системы. — М.: Наука, 1970. — 392 с. — 17 500 экз.