Калибровка векторного потенциала: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Mikisavex (обсуждение | вклад) не "в виде", а "с дополнительным условием таким-то" + стилевые правки |
Mikisavex (обсуждение | вклад) м →Возможность и смысл калибровки: думается, так понятнее |
||
Строка 5: | Строка 5: | ||
: <math>\mathbf{A} \rightarrow \mathbf{A} + \nabla \psi</math>, |
: <math>\mathbf{A} \rightarrow \mathbf{A} + \nabla \psi</math>, |
||
: <math>\varphi \rightarrow \varphi - \frac{\partial\psi}{\partial t}</math>, |
: <math>\varphi \rightarrow \varphi - \frac{\partial\psi}{\partial t}</math>, |
||
где <math>\psi = \psi(\vec{r}, t)</math> — произвольная [[скаляр]]ная функция координат (<math>\vec{r}</math>) и времени (<math>t</math>), не изменяют вида [[Уравнения Максвелла|уравнений Максвелла]], а значит, допустимы с физической точки зрения. Необходимо остановиться на каком-то выборе данной функции, причём он может быть сделан из соображений математического удобства. На практике осуществляется не фиксация функции <math>\psi</math>, а наложение некоторого дополнительного условия на потенциалы. |
где <math>\psi = \psi(\vec{r}, t)</math> — произвольная [[скаляр]]ная функция координат (<math>\vec{r}</math>) и времени (<math>t</math>), не изменяют вида [[Уравнения Максвелла|уравнений Максвелла]], а значит, допустимы с физической точки зрения. Необходимо остановиться на каком-то выборе данной функции, причём он может быть сделан из соображений математического удобства. На практике осуществляется не фиксация функции <math>\psi</math> (при предварительно введённых потенциалах), а наложение некоторого дополнительного условия на сами потенциалы. |
||
== Примеры калибровок == |
== Примеры калибровок == |
Версия от 16:52, 6 ноября 2021
Калибро́вка ве́кторного потенциа́ла — наложение дополнительных условий, позволяющих однозначно вычислить векторный потенциал электромагнитного поля () при решении тех или иных физических задач. Налагаемые условия являются искусственными и служат для упрощения математических выкладок. Наиболее широкое распространение получили калибровка Кулона и калибровка Лоренца, но существуют и применяются и другие калибровки.
Возможность и смысл калибровки
При введении векторного () и скалярного () потенциалов электромагнитного поля возникает неоднозначность, не создающая никаких проблем фундаментального плана, но требующая разрешения для проведения расчётов в конкретных задачах. А именно, преобразования
- ,
- ,
где — произвольная скалярная функция координат () и времени (), не изменяют вида уравнений Максвелла, а значит, допустимы с физической точки зрения. Необходимо остановиться на каком-то выборе данной функции, причём он может быть сделан из соображений математического удобства. На практике осуществляется не фиксация функции (при предварительно введённых потенциалах), а наложение некоторого дополнительного условия на сами потенциалы.
Примеры калибровок
Кулоновская калибровка
Кулоновская калибровка — выбор векторного потенциала магнитного поля (A) с дополнительным условием
Эта калибровка применяется для рассмотрения нерелятивистских магнитостатических задач.
Калибровка Лоренца
Калибровка Лоренца[1] — выбор векторного потенциала электромагнитного поля с условием
- , где — электростатический потенциал.
Эта калибровка применяется для рассмотрения динамических задач. Калибровка Лоренца сохраняется при преобразованиях Лоренца и в ковариантной форме может быть записана как
Калибровка Ландау
Калибровка Ландау — выбор векторного потенциала магнитного поля в виде , где — магнитное поле, а — единичный орт по направлению оси y.
Используется для удобства при решении уравнения Шрёдингера в магнитном поле, поскольку позволяет разделить переменные в декартовой системе координат и получить так называемые уровни Ландау.
Симметричная калибровка
Симметричная калибровка — выбор векторного потенциала магнитного поля в виде , где — вектор магнитного поля, а — радиус-вектор.
Калибровка Лондонов
Калибровка Лондонов — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условия
, где -- вектор нормали к поверхности сверхпроводника.
В этой калибровке упрощается запись уравнения Лондонов для линейной электродинамики сверхпроводников.
Калибровка Вейля
Калибровка Вейля — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условие
Другие названия — калибровка
Калибровка Пуанкаре
Калибровка Пуанкаре (мультиполярная калибровка) — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условие
Калибровка Фока — Швингера
Калибровка Фока — Швингера — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условие
- ,
или
Калибровка Дирака
См. также
Примечания
- ↑ Впервые предложена Людвигом В. Лоренцем.
Для улучшения этой статьи желательно:
|