Ортогональное преобразование: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Строка 65: Строка 65:
где <math>A_{\varphi_i}</math> — матрица поворота на угол <math>{\varphi_i}</math> (см. формулу выше), число единиц равно размерности подпространства <math>\,L_{1}</math> и число минус единиц равно размерности подпространства <math>\,L_{-1}</math>.
где <math>A_{\varphi_i}</math> — матрица поворота на угол <math>{\varphi_i}</math> (см. формулу выше), число единиц равно размерности подпространства <math>\,L_{1}</math> и число минус единиц равно размерности подпространства <math>\,L_{-1}</math>.
{{/рамка}}
{{/рамка}}
Такая запись матрицы <math>A</math> ортогонального преобразования иногда называется приведением ортогональной матрицы к каноническому виду.
Такая запись матрицы <math>\,A</math> ортогонального преобразования иногда называется ''приведением к каноническому виду.''


== См. также ==
== См. также ==

Версия от 11:24, 30 июля 2011

Ортогональное преобразование — линейное преобразование евклидова пространства , сохраняющее длины или (что эквивалентно этому) скалярное произведение векторов. Это означает, что для любых двух векторов выполняется равенство

где треугольными скобками обозначено скалярное произведение в пространстве .

Свойства

  • Ортогональные преобразования (и только они) переводят один ортонормированный базис евклидова пространства в другой.
  • Необходимым и достаточным условием ортогональности линейного преобразования является равенство

где  — сопряжённое, а  — обратное преобразования.

  • В ортонормированном базисе ортогональным преобразованиям (и только им) соответствуют ортогональные матрицы. Таким образом, критерием ортогональности матрицы является равенство равенство (*), где — транспонированная, а — обратная матрицы.
  • Собственные значения ортогональных преобразований равны по модулю , а собственные векторы (вообще говоря, комплексные), отвечающие различным собственным значениям, ортогональны.
  • Определитель ортогонального преобразования равен (собственное ортогональное преобразование) или (несобственное ортогональное преобразование).
  • В произвольном -мерном евклидовом пространстве ортогональное преобразование является композицией конечного числа отражений.
  • Множество всех ортогональных преобразований евклидова пространства образует группу относительно операции композиции — ортогональную группу данного евклидова пространства. Собственные ортогональные преобразование образуют нормальную подгруппу в этой группе (специальную ортогональную группу).

Размерность два

В случае евклидовой плоскости всякое собственное ортогональное преобразование является поворотом на некоторый угол , и его матрица в любом ортонормированном базисе имеет вид

Матрица несобственного ортогонального преобразования имеет вид

Она симметрична, имеет собственными числами 1 и −1 и, следовательно, является инволюцией. В подходящем ортонормированном базисе матрица несобственного ортогонального преобразования имеет вид

то есть оно является отражением относительно некоторой прямой. Собственное ортогональное преобразование есть произведение двух отражений:

Размерность 3

В трёхмерном пространстве всякое собственное ортогональное преобразование есть поворот вокруг некоторой оси, а всякое несобственное — композиция поворота вокруг оси и отражения в перпендикулярной плоскости.

Размерность n

Имеет место следующая общая теорема:

Для каждого ортогонального преобразования евклидова -мерного пространства справедливо такое разложение

где все подпространства и попарно ортогональны и являются инвариантными подпространствами преобразования , причём:

  • ограничение на есть (тождественное преобразование),
  • ограничение на есть ,
  • все пространства двумерны (плоскости), и ограничение на есть поворот плоскости на угол .

Шаблон:/рамка

В терминах матрицы преобразования эту теорему можно сформулировать следующим образом:

Для всякого ортогонального преобразования существует такой ортонормированный базис, в котором его матрица имеет блочно-диагональный вид:

где — матрица поворота на угол (см. формулу выше), число единиц равно размерности подпространства и число минус единиц равно размерности подпространства . Шаблон:/рамка Такая запись матрицы ортогонального преобразования иногда называется приведением к каноническому виду.

См. также

Литература

  • Мальцев А. И. Основы линейной алгебры. М.: Наука, 1975.
  • Гельфанд И. М. Лекции по линейной алгебре М.: Наука, 1971.
  • Фаддеев Д. К. Лекции по алгебре. М.: Наука, 1984.
  • В. А. Ильин, Э. Г. Позняк Линейная алгебра. — Физматлит, Москва, 1999.
  • Гантмахер Ф. Р. Теория матриц, — М.: Наука, 1966.
  • Гельфанд И. М., Линейная алгебра. Курс лекций.
  • Кострикин А. И., Манин Ю. И. Линейная алгебра и геометрия, — М.: Наука, 1986.
  • Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, — Физматлит, Москва, 2009.