Калибровка векторного потенциала: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
м оформление
Строка 41: Строка 41:
'''Калибровка Пуанкаре''' ('''мультиполярная калибровка''') — выбор [[векторный потенциал|векторного потенциала]] магнитного поля таким образом, чтобы выполнялись условие
'''Калибровка Пуанкаре''' ('''мультиполярная калибровка''') — выбор [[векторный потенциал|векторного потенциала]] магнитного поля таким образом, чтобы выполнялись условие


:<math>\mathbf{x}\cdot\mathbf{A}=0</math>
:<math>\mathbf{r}\cdot\mathbf{A}=0</math>


=== Калибровка Фока — Швингера ===
=== Калибровка Фока — Швингера ===

Версия от 18:46, 9 апреля 2012

Калибро́вка ве́кторного потенциа́ла — наложение дополнительных условий, позволяющих однозначно вычислить векторный потенциал электромагнитного поля для решения тех или иных физических задач.

Примеры калибровок

Кулоновская калибровка

Кулоновская калибровка — выбор векторного потенциала магнитного поля в виде

Эта калибровка применяется для рассмотрения нерелятивистских магнитостатических задач.

Калибровка Лоренца

Калибровка Лоренца — выбор векторного потенциала магнитного поля в виде

, где  — электростатический потенциал.

Эта калибровка применяется для рассмотрения динамических задач. Калибровка Лоренца сохраняется при преобразованиях Лоренца и в ковариантной форме может быть записана как

Калибровка Ландау

Калибровка Ландау — выбор векторного потенциала магнитного поля в виде , где  — магнитное поле, а  — единичный орт по направлению оси y.

Используется для удобства при решении уравнения Шрёдингера в магнитном поле, поскольку позволяет разделить переменные в декартовой системе координат и получить так называемые уровни Ландау.

Симметричная калибровка

Симметричная калибровка — выбор векторного потенциала магнитного поля в виде , где  — вектор магнитного поля, а  — радиус-вектор.

Калибровка Лондонов

Калибровка Лондонов — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условия

, где -- вектор нормали к поверхности сверхпроводника.

В этой калибровке упрощается запись уравнения Лондонов для линейной электродинамики сверхпроводников.

Калибровка Вейля

Калибровка Вейля — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условие

Калибровка Пуанкаре

Калибровка Пуанкаре (мультиполярная калибровка) — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условие

Калибровка Фока — Швингера

Калибровка Фока — Швингера — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условие

,

или

См. также