Алгебраическая система: различия между версиями
[отпатрулированная версия] | [непроверенная версия] |
Bezik (обсуждение | вклад) Отклонено последнее 1 изменение (89.208.240.1): ну очень частная структура, находите в литературе по _универсальной алге |
|||
Строка 40: | Строка 40: | ||
* [[Алгебра Ли]] — алгебра с [[антикоммутативность|антикоммутативным]] умножением (обычно обозначаемым <math>[a,b]\!</math>), удовлетворяющим [[тождество Якоби|тождеству Якоби]] <math>[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0\!</math> |
* [[Алгебра Ли]] — алгебра с [[антикоммутативность|антикоммутативным]] умножением (обычно обозначаемым <math>[a,b]\!</math>), удовлетворяющим [[тождество Якоби|тождеству Якоби]] <math>[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0\!</math> |
||
* [[Алгебра Лейбница]] — алгебра с умножением (обычно обозначаемым <math>[a,b]\!</math>), удовлетворяющим [[тождество Якоби|тождеству Якоби]] <math>[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0\!</math> |
* [[Алгебра Лейбница]] — алгебра с умножением (обычно обозначаемым <math>[a,b]\!</math>), удовлетворяющим [[тождество Якоби|тождеству Якоби]] <math>[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0\!</math> |
||
* [[Алгебра Йордана]] — коммутативная алгебра с [[ |
* [[Алгебра Йордана]] — коммутативная алгебра с [[Тождество_(математика)|тождеством]] слабой ассоциативности: <math>x^2(yx)=(x^2y)x\!</math> |
||
* [[Алгебра некоммутативная йорданова]] — некоммутативная алгебра с [[Тождество алгебр|тождеством]] слабой ассоциативности: <math>x^2(yx)=(x^2y)x\!</math> и [[ |
* [[Алгебра некоммутативная йорданова]] — некоммутативная алгебра с [[Тождество алгебр|тождеством]] слабой ассоциативности: <math>x^2(yx)=(x^2y)x\!</math> и [[Тождество_(математика)|тождеством]] эластичности: <math>x(yx)=(xy)x\!</math> |
||
* [[Альтернативная алгебра]] — алгебра с [[ |
* [[Альтернативная алгебра]] — алгебра с [[Тождество_(математика)|тождествами]] <math>x^2y=x(xy), \quad yx^2=(yx)x\!</math> |
||
* [[Алгебра Мальцева]] — [[антикоммутативность|антикоммутативная]] алгебра с [[Тождество алгебр|тождеством]]: |
* [[Алгебра Мальцева]] — [[антикоммутативность|антикоммутативная]] алгебра с [[Тождество алгебр|тождеством]]: |
||
*: <math>(xy)(xz)+(y(xz))x+((xz)x)y=((xy)z)x+((yz)x)x+((zx)y)x\!</math> |
*: <math>(xy)(xz)+(y(xz))x+((xz)x)y=((xy)z)x+((yz)x)x+((zx)y)x\!</math> |
Версия от 12:25, 26 января 2014
Алгебраическая система (или алгебраическая структура) в универсальной алгебре — множество (носитель) с заданным на нём набором операций и отношений (сигнатура), удовлетворяющим некоторой системе аксиом. Алгебраическая система с пустым множеством отношений называется алгеброй, а система с пустым множеством операций — моделью.
n-арная операция на G — это отображение прямого произведения n экземпляров множества в само множество . По определению, 0-арная операция — это просто выделенный элемент множества. Чаще всего рассматриваются унарные и бинарные операции, поскольку с ними легче работать. Но в связи с нуждами топологии, алгебры, комбинаторики постепенно накапливается техника работы с операциями большей арности, здесь в качестве примера можно привести теорию операд (клонов полилинейных операций) и алгебр над ними (мультиоператорных алгебр).
Для алгебраических систем естественным образом определяются морфизмы как отображения, сохраняющие операцию. Таким образом определяются категории групп, колец, R-модулей и т. п.
Если множество обладает структурой топологического пространства, и операции являются непрерывными, то его называют топологической алгебраической системой. Так, в топологической группе операции умножения и взятия обратного элемента являются непрерывными.
Не все алгебраические конструкции описываются алгебраическими системами, в качестве примера таковых можно упомянуть коалгебры, биалгебры, алгебры Хопфа и комодули над ними.
Основные классы алгебраических систем
- Множество можно считать вырожденной алгебраической системой с пустым набором операций и отношений[1].
Группоиды, полугруппы, группы
- Группоид — множество с одной бинарной операцией , обычно называемой умножением.
- Правая квазигруппа — группоид, в котором возможно правое деление, то есть уравнение имеет единственное решение для любых и .
- Квазигруппа — одновременно правая и левая квазигруппы.
- Лупа — квазигруппа с единичным элементом , таким, что .
- Полугруппа — группоид, в котором умножение ассоциативно: .
- Моноид — полугруппа с единичным элементом.
- Группа — моноид, в котором для каждого элемента a группы можно определить обратный элемент a−1, такой, что .
- Абелева группа — группа, в которой операция коммутативна, то есть, . Операцию в абелевой группе часто называют сложением ('+').
Кольца
- Полукольцо — похоже на кольцо, но без обратимости сложения.
- Почти-кольцо — также обобщение кольца, отличающееся от обычного кольца отсутствием требования коммутативности сложения и отсутствием требования дистрибутивности умножения по сложению (левой или правой)
- Кольцо — структура с двумя бинарными операциями: абелева группа по сложению, моноид по умножению, выполняется закон дистрибутивности: .
- Коммутативное кольцо — кольцо с коммутативным умножением.
- Целостное кольцо — кольцо, в котором произведение двух ненулевых элементов не равно нулю.
- Тело — кольцо, в котором ненулевые элементы образуют группу по умножению.
- Поле — коммутативное кольцо, являющееся телом.
Алгебры
- Алгебра (линейная) — пространство с билинейной дистрибутивной операцией умножения, иначе говоря, кольцо с согласованной структурой пространства
- Ассоциативная алгебра — алгебра с ассоциативным умножением
- Алгебра термов
- Коммутативная алгебра
- Градуированная алгебра
- Алгебра Ли — алгебра с антикоммутативным умножением (обычно обозначаемым ), удовлетворяющим тождеству Якоби
- Алгебра Лейбница — алгебра с умножением (обычно обозначаемым ), удовлетворяющим тождеству Якоби
- Алгебра Йордана — коммутативная алгебра с тождеством слабой ассоциативности:
- Алгебра некоммутативная йорданова — некоммутативная алгебра с тождеством слабой ассоциативности: и тождеством эластичности:
- Альтернативная алгебра — алгебра с тождествами
- Алгебра Мальцева — антикоммутативная алгебра с тождеством:
- Коммутантно-ассоциативная алгебра
- Алгебра над операдой — один из наиболее общих видов алгебраических систем. Здесь сама операда играет роль сигнатуры алгебры.
Решётки
- Решётка — структура с двумя коммутативными, ассоциативными, идемпотентными операциями, удовлетворяющими закону поглощения.
- Булева алгебра.
Примечания
- ↑ Курош А. Г. Общая алгебра. — М.: Наука, 1974. С.15
Литература
- П. Кон «Универсальная алгебра», — М.: Мир, 1969, 351 с
- А. И. Мальцев «Алгебраические системы», — М., Наука, 1970 г., 392 стр. с илл.
- «Общая алгебра, в 2-х томах (Серия: Справочная математическая библиотека)», В. А. Артамонов и др., под редакцией Л. А. Скорнякова, — М.: Наука, Физматлит, 1990—1991, 592 с + 480 с.