Точки Лагранжа: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Строка 72: Строка 72:
: '''Пример:''' Точка '''L{{sub|3}}''' в системе Солнце — Земля находится за Солнцем, на противоположной стороне земной орбиты. Однако, несмотря на свою небольшую гравитацию (по сравнению с гравитацией Солнца), Земля всё же оказывает на него небольшое влияние, поэтому точка '''L{{sub|3}}''' находится не на самой орбите Земли, а чуть дальше от Солнца, чем Земля{{Нет АИ|12|11|2012}}, так как вращение происходит не вокруг Солнца, а вокруг барицентра). В результате в этой точке '''L{{sub|3}}''' достигается такое сочетание гравитации Солнца и Земли, что объекты, находящиеся в этой точке, движутся с таким же орбитальным периодом, как и наша планета.
: '''Пример:''' Точка '''L{{sub|3}}''' в системе Солнце — Земля находится за Солнцем, на противоположной стороне земной орбиты. Однако, несмотря на свою небольшую гравитацию (по сравнению с гравитацией Солнца), Земля всё же оказывает на него небольшое влияние, поэтому точка '''L{{sub|3}}''' находится не на самой орбите Земли, а чуть дальше от Солнца, чем Земля{{Нет АИ|12|11|2012}}, так как вращение происходит не вокруг Солнца, а вокруг барицентра). В результате в этой точке '''L{{sub|3}}''' достигается такое сочетание гравитации Солнца и Земли, что объекты, находящиеся в этой точке, движутся с таким же орбитальным периодом, как и наша планета.


До начала космической эры среди писателей-фантастов была очень популярна идея о существовании на противоположной стороне земной орбиты в точке '''L{{sub|3}}''' другой аналогичной ей планеты, называемой «[[Противоземля|Противоземлёй]]», которая из-за своего расположения была недоступна для прямых наблюдений. Однако на самом деле из-за гравитационного влияния других планет точка '''L{{sub|3}}''' в системе Солнце — Земля является крайне неустойчивой. Так, во время гелиоцентрических соединений Земли и Венеры по разные стороны Солнца, которые случаются каждые 20 месяцев, Венера находится всего в {{num|0.3|[[Астрономическая единица|а. е.]]}} от точки '''L{{sub|3}}''' и таким образом оказывает очень серьёзное влияние на её расположение относительно земной орбиты. Кроме того, из-за несбалансированности{{прояснить}} центра тяжести системы Солнце — Юпитер относительно Земли и эллиптичности земной орбиты, так называемая «Противоземля» всё равно время от времени была бы доступна для наблюдений и обязательно была бы замечена. Ещё одним эффектом, выдающим её существование, была бы её собственная гравитация: влияние тела размером уже порядка {{num|150|км}} и более на орбиты других планет было бы заметно<ref name=could>[http://www.popsci.com/scitech/article/2009-04/could-there-be-planet-hidden-opposite-side-our-sun Could There Be a Planet Hidden on the Opposite Side of our Sun? PopSci asks the scientist who has peered around it]{{ref-en}}</ref>. {{нет АИ 2|С появлением возможности производить наблюдения с помощью космических аппаратов и зондов было достоверно показано, что в этой точке нет объектов размером более {{num|100|м}}<ref>[http://www.nasa.gov/mission_pages/stereo/news/invisible_frontier.html Новости миссии STEREO на сайте НАСА]</ref>.
До начала космической эры среди писателей-фантастов была очень популярна идея о существовании на противоположной стороне земной орбиты в точке '''L{{sub|3}}''' другой аналогичной ей планеты, называемой «[[Противоземля|Противоземлёй]]», которая из-за своего расположения была недоступна для прямых наблюдений. Однако на самом деле из-за гравитационного влияния других планет точка '''L{{sub|3}}''' в системе Солнце — Земля является крайне неустойчивой. Так, во время гелиоцентрических соединений Земли и Венеры по разные стороны Солнца, которые случаются каждые 20 месяцев, Венера находится всего в {{num|0.3|[[Астрономическая единица|а. е.]]}} от точки '''L{{sub|3}}''' и таким образом оказывает очень серьёзное влияние на её расположение относительно земной орбиты. Кроме того, из-за несбалансированности{{прояснить}} центра тяжести системы Солнце — Юпитер относительно Земли и эллиптичности земной орбиты, так называемая «Противоземля» всё равно время от времени была бы доступна для наблюдений и обязательно была бы замечена. Ещё одним эффектом, выдающим её существование, была бы её собственная гравитация: влияние тела размером уже порядка {{num|150|км}} и более на орбиты других планет было бы заметно<ref name=could>[http://www.popsci.com/scitech/article/2009-04/could-there-be-planet-hidden-opposite-side-our-sun Could There Be a Planet Hidden on the Opposite Side of our Sun? PopSci asks the scientist who has peered around it]{{ref-en}}</ref>. С появлением возможности производить наблюдения с помощью космических аппаратов и зондов было достоверно показано, что в этой точке нет объектов размером более {{num|100|м}}<ref>[http://www.nasa.gov/mission_pages/stereo/news/invisible_frontier.html Новости миссии STEREO на сайте НАСА]</ref>.


Орбитальные космические аппараты и спутники, расположенные вблизи точки '''L{{sub|3}}''', могут постоянно следить за различными формами активности на поверхности Солнца, в частности, о появлении новых пятен или вспышек, и оперативно передавать информацию на Землю (например, в рамках системы раннего предупреждения о космической погоде [[Национальное управление океанических и атмосферных исследований|NOAA]] {{iw|Space Weather Prediction Center}}). Кроме того, информация с таких спутников может быть использована для обеспечения безопасности дальних пилотируемых полётов, например к Марсу или астероидам. В 2010 году были изучены несколько вариантов запуска подобного спутника<ref name=transferslibthree>{{cite journal
Орбитальные космические аппараты и спутники, расположенные вблизи точки '''L{{sub|3}}''', могут постоянно следить за различными формами активности на поверхности Солнца, в частности, о появлении новых пятен или вспышек, и оперативно передавать информацию на Землю (например, в рамках системы раннего предупреждения о космической погоде [[Национальное управление океанических и атмосферных исследований|NOAA]] {{iw|Space Weather Prediction Center}}). Кроме того, информация с таких спутников может быть использована для обеспечения безопасности дальних пилотируемых полётов, например к Марсу или астероидам. В 2010 году были изучены несколько вариантов запуска подобного спутника<ref name=transferslibthree>{{cite journal

Версия от 17:38, 26 января 2016

Точки Лагранжа и эквипотенциальные поверхности системы двух тел (с учётом центробежного потенциала)

Точки Лагра́нжа, точки либра́ции (лат. librātiō — раскачивание) или L-точки — точки в системе из двух массивных тел, в которых третье тело с пренебрежимо малой массой, не испытывающее воздействие никаких других сил, кроме гравитационных, со стороны двух первых тел, может оставаться неподвижным относительно этих тел.

Более точно точки Лагранжа представляют собой частный случай при решении так называемой ограниченной задачи трёх тел — когда орбиты всех тел являются круговыми и масса одного из них намного меньше массы любого из двух других. В этом случае можно считать, что два массивных тела обращаются вокруг их общего центра масс с постоянной угловой скоростью. В пространстве вокруг них существуют пять точек, в которых третье тело с пренебрежимо малой массой может оставаться неподвижным во вращающейся системе отсчёта, связанной с массивными телами. В этих точках гравитационные силы, действующие на малое тело, уравновешиваются центробежной силой.

Точки Лагранжа получили своё название в честь математика Жозефа Луи Лагранжа, который первым[1] в 1772 году привёл решение математической задачи, из которого следовало существование этих особых точек.

Расположение точек Лагранжа

Схема пяти лагранжевых точек в системе двух тел, когда одно тело намного массивнее другого (Солнце и Земля). В такой системе точки L3, L4, L5 показаны на самой орбите, хотя фактически они будут находиться немного за ней

Все точки Лагранжа лежат в плоскости орбит массивных тел и обозначаются заглавной латинской буквой L с числовым индексом от 1 до 5. Первые три точки расположены на линии, проходящей через оба массивных тела. Эти точки Лагранжа называются коллинеарными и обозначаются L1, L2 и L3. Точки L4 и L5 называются треугольными или троянскими.

L1 находится между двумя телами системы, ближе к менее массивному телу, L2 — снаружи, за менее массивным телом и L3 — за более массивным. Расстояния от центра масс системы до этих точек в первом приближении по α рассчитываются с помощью следующих формул[2][3]:

где ,

R — расстояние между телами,
M1 — масса более массивного тела,
M2 — масса второго тела.

L1

Точка L1 лежит на прямой, соединяющей два тела с массами M1 и M2 (M1 > M2), и находится между ними, вблизи второго тела. Её наличие обусловлено тем, что гравитация тела M2 частично компенсирует гравитацию тела M1. При этом чем больше M2, тем дальше от него будет располагаться эта точка.

Пример: Объекты, которые движутся вокруг Солнца ближе, чем Земля, как правило, имеют меньшие орбитальные периоды, чем у Земли, если они не входят в зону влияния земного притяжения. Если объект находится непосредственно между Землёй и Солнцем, то действие земной силы тяжести отчасти компенсирует влияние гравитации Солнца, за счёт этого происходит увеличение орбитального периода объекта. Причём чем ближе к Земле находится объект, тем сильнее этот эффект. И наконец, на определённом приближении к планете — в точке L1 — действие земной силы тяжести уравновешивает влияние солнечной гравитации настолько, что период обращения объекта вокруг Солнца становится равным периоду обращения Земли. Для нашей планеты расстояние до точки L1 составляет около 1,5 млн км. Притяжение Солнца здесь (118 мкм/с²) на 2 % сильнее, чем на орбите Земли (116 мкм/с²), тогда как снижение требуемой центростремительной силы вдвое меньше (59 мкм/с²). Сумма этих двух эффектов уравновешивается притяжением Земли, которое составляет здесь также 177 мкм/с².
Использование

В системе Солнце—Земля точка L1 может быть идеальным местом для размещения космической обсерватории для наблюдения Солнца, которое в этом месте никогда не перекрывается ни Землёй, ни Луной. Первым аппаратом, работавшем вблизи этой точки, был запущенный в августе 1978 года аппарат ISEE-3. Аппарат вышел на периодическую гало-орбиту?! вокруг этой точки 20 ноября 1978 года[4] и был сведён с этой орбиты 10 июня 1982 года (для исполнения новых задач)[5]. На такой же орбите с мая 1996 года работает аппарат SOHO. Аппараты ACE, WIND и DSCOVR находятся на квази-периодических орбитах Лиссажу́?! близ этой же точки, соответственно, с 12 декабря 1997[6], 16 ноября 2001 и 8 июня 2015 года[7].

Лунная точка L1 (в системе Земля — Луна) может стать идеальным местом для строительства космической пилотируемой орбитальной станции, которая, располагаясь на «полпути» между Землёй и Луной, позволила бы легко добраться до Луны с минимальными затратами топлива и стать ключевым узлом грузового потока между Землёй и её спутником.

L2

Точка L2 в системе Солнце — Земля, располагающаяся далеко за пределами орбиты Луны

Точка L2 лежит на прямой, соединяющей два тела с массами M1 и M2 (M1 > M2), и находится за телом с меньшей массой. Точки L1 и L2 располагаются на одной линии и в пределе M1 ≫ M2 симметричны относительно M2. В точке L2 гравитационные силы, действующие на тело, компенсируют действие центробежных сил во вращающейся системе отсчёта.

Пример: у объектов, расположенных за орбитой Земли, орбитальный период почти всегда больше, чем у Земли. Но дополнительное влияние на объект силы тяжести Земли, помимо действия солнечной гравитации, приводит к увеличению скорости вращения и уменьшению времени оборота вокруг Солнца, в результате в точке L2 орбитальный период объекта становится равным орбитальному периоду Земли.

Точка L2 в системе Солнце — Земля является идеальным местом для строительства орбитальных космических обсерваторий и телескопов. Поскольку объект в точке L2 способен длительное время сохранять свою ориентацию относительно Солнца и Земли, производить его экранирование и калибровку становится гораздо проще. Однако эта точка расположена немного дальше земной тени (в области полутени)[прим. 1], так что солнечная радиация блокируется не полностью. В этой точке уже находятся аппараты американского и европейского космических агентств — WMAP, «Планк», «Гершель» и Gaia, а в 2018 должен присоединиться «Джеймс Уэбб». Точка L2 в системе Земля—Луна может быть использована для обеспечения спутниковой связи с объектами на обратной стороне Луны, а также быть удобным местом для размещения заправочной станции для обеспечения грузопотока между Землёй и Луной[8]

Если M2 много меньше по массе, чем M1, то точки L1 и L2 находятся на примерно одинаковом расстоянии r от тела M2, равном радиусу сферы Хилла :

где R — расстояние между компонентами системы.

Это расстояние можно описать как радиус круговой орбиты вокруг M2, для которой период обращения в отсутствие M1 в раз меньше, чем период обращения M2 вокруг M1.

Примеры

L3

Три из пяти точек Лагранжа расположены на одной оси, соединяющей два тела

Точка L3 лежит на прямой, соединяющей два тела с массами M1 и M2 (M1 > M2), и находится за телом с большей массой. Так же, как для точки L2, в этой точке гравитационные силы компенсируют действие центробежных сил.

Пример: Точка L3 в системе Солнце — Земля находится за Солнцем, на противоположной стороне земной орбиты. Однако, несмотря на свою небольшую гравитацию (по сравнению с гравитацией Солнца), Земля всё же оказывает на него небольшое влияние, поэтому точка L3 находится не на самой орбите Земли, а чуть дальше от Солнца, чем Земля[источник не указан 4436 дней], так как вращение происходит не вокруг Солнца, а вокруг барицентра). В результате в этой точке L3 достигается такое сочетание гравитации Солнца и Земли, что объекты, находящиеся в этой точке, движутся с таким же орбитальным периодом, как и наша планета.

До начала космической эры среди писателей-фантастов была очень популярна идея о существовании на противоположной стороне земной орбиты в точке L3 другой аналогичной ей планеты, называемой «Противоземлёй», которая из-за своего расположения была недоступна для прямых наблюдений. Однако на самом деле из-за гравитационного влияния других планет точка L3 в системе Солнце — Земля является крайне неустойчивой. Так, во время гелиоцентрических соединений Земли и Венеры по разные стороны Солнца, которые случаются каждые 20 месяцев, Венера находится всего в 0,3 а. е. от точки L3 и таким образом оказывает очень серьёзное влияние на её расположение относительно земной орбиты. Кроме того, из-за несбалансированности[прояснить] центра тяжести системы Солнце — Юпитер относительно Земли и эллиптичности земной орбиты, так называемая «Противоземля» всё равно время от времени была бы доступна для наблюдений и обязательно была бы замечена. Ещё одним эффектом, выдающим её существование, была бы её собственная гравитация: влияние тела размером уже порядка 150 км и более на орбиты других планет было бы заметно[9]. С появлением возможности производить наблюдения с помощью космических аппаратов и зондов было достоверно показано, что в этой точке нет объектов размером более 100 м[10].

Орбитальные космические аппараты и спутники, расположенные вблизи точки L3, могут постоянно следить за различными формами активности на поверхности Солнца, в частности, о появлении новых пятен или вспышек, и оперативно передавать информацию на Землю (например, в рамках системы раннего предупреждения о космической погоде NOAA Space Weather Prediction Center[англ.]). Кроме того, информация с таких спутников может быть использована для обеспечения безопасности дальних пилотируемых полётов, например к Марсу или астероидам. В 2010 году были изучены несколько вариантов запуска подобного спутника[11]

L4 и L5

Гравитационное ускорение в точке L4

Если на основе линии, соединяющей оба тела системы, построить два равносторонних треугольника, две вершины которых соответствуют центрам тел M1 и M2, то точки L4 и L5 будут соответствовать положению третьих вершин этих треугольников, расположенных в плоскости орбиты второго тела в 60 градусах впереди и позади него.

Наличие этих точек и их высокая стабильность обусловливается тем, что, поскольку расстояния до двух тел в этих точках одинаковы, то силы притяжения со стороны двух массивных тел соотносятся в той же пропорции, что их массы, и таким образом результирующая сила направлена на центр масс системы; кроме того, геометрия треугольника сил подтверждает, что результирующее ускорение связано с расстоянием до центра масс той же пропорцией, что и для двух массивных тел. Так как центр масс является одновременно и центром вращения системы, результирующая сила точно соответствует той, которая нужна для удержания тела в точке Лагранжа в орбитальном равновесии с остальной системой. (На самом деле, масса третьего тела и не должна быть пренебрежимо малой). Данная треугольная конфигурация была обнаружена Лагранжем во время работы над задачей трёх тел. Точки L4 и L5 называют треугольными (в отличие от коллинеарных).

Также точки называют троянскими: это название происходит от троянских астероидов Юпитера, которые являются самым ярким примером проявления этих точек. Они были названы в честь героев Троянской войны из «Илиады» Гомера, причём астероиды в точке L4 получают имена греков, а в точке L5 — защитников Трои; поэтому их теперь так и называют «греками» (или «ахейцами») и «троянцами».

Расстояния от центра масс системы до этих точек в координатной системе с центром координат в центре масс системы рассчитываются по следующим формулам:

где

,
R — расстояние между телами,
M1 — масса более массивного тела,
M2 — масса второго тела.

Примеры

  • В 2010 году в системе Солнце — Земля в троянской точке L4 обнаружен астероид[12]. В L5 пока не обнаружено троянских астероидов, но там наблюдается довольно большое скопление межпланетной пыли.
  • По некоторым наблюдениям, в точках L4 и L5 системы Земля — Луна находятся очень разрежённые скопления межпланетной пыли — облака Кордылевского.
  • В системе Солнце — Юпитер в окрестностях точек L4 и L5 находятся так называемые троянские астероиды. По состоянию на 21 октября 2010 известно около четырёх с половиной тысяч астероидов в точках L4 и L5[13].
  • Троянские астероиды в точках L4 и L5 есть не только у Юпитера, но и у других планет-гигантов[14].
  • Другим интересным примером является спутник Сатурна Тефия, в точках L4 и L5 которой находятся два небольших спутника — Телесто и Калипсо. Ещё одна пара спутников известна в системе Сатурн — Диона: Елена в точке L4 и Полидевк в точке L5. Тефия и Диона в сотни раз массивнее своих «подопечных», и гораздо легче Сатурна, что делает систему стабильной.
  • Один из сценариев модели ударного формирования Луны предполагает, что гипотетическая протопланета (планетезималь) Тейя, в результате столкновения которой с Землёй образовалась Луна, сформировалась в точке Лагранжа L4 или L5 системы Солнце — Земля[15].
  • Первоначально считалось, что в системе KOI-730 две из четырёх планет обращаются вокруг своего солнца по одной орбите. Вдоль общей орбиты эти два мира постоянно разделяют 60 градусов дистанции[16]. Однако дальнейшие исследования показали, что данная система не содержит коорбитальных планет[17].

Равновесие в точках Лагранжа

Изображение двойной звезды Мира (омикрон Кита), сделанное космическим телескопом «Хаббл» в ультрафиолетовом диапазоне. На фотографии виден поток материи, направленный от основного компонента — красного гиганта — к компаньону — белому карлику. Массообмен осуществляется через окрестности точки L1

Тела, помещённые в коллинеарных точках Лагранжа, находятся в неустойчивом равновесии. Например, если объект в точке L1 слегка смещается вдоль прямой, соединяющей два массивных тела, сила, притягивающая его к тому телу, к которому оно приближается, увеличивается, а сила притяжения со стороны другого тела, наоборот, уменьшается. В результате объект будет всё больше удаляться от положения равновесия.

Такая особенность поведения тел в окрестностях точки L1 играет важную роль в тесных двойных звёздных системах. Полости Роша компонент таких систем соприкасаются в точке L1, поэтому, когда одна из звёзд-компаньонов в процессе эволюции заполняет свою полость Роша, вещество перетекает с одной звезды на другую именно через окрестности точки Лагранжа L1[18].

Несмотря на это, существуют стабильные замкнутые орбиты (во вращающейся системе координат) вокруг коллинеарных точек либрации, по крайней мере, в случае задачи трёх тел. Если на движение влияют и другие тела (как это происходит в Солнечной системе), вместо замкнутых орбит объект будет двигаться по квазипериодическим орбитам, имеющим форму фигур Лиссажу. Несмотря на неустойчивость такой орбиты, космический аппарат может оставаться на ней в течение длительного времени, затрачивая относительно небольшое количество топлива[19].

В отличие от коллинеарных точек либрации, в троянских точках обеспечивается устойчивое равновесие, если M1/M2 > 24,96. При смещении объекта возникают силы Кориолиса, которые искривляют траекторию, и объект движется по устойчивой орбите вокруг точки либрации[2].

Практическое применение

Файл:RocheLobesDetailed.PNG
Полости Роша для двойной звёздной системы (обозначены жёлтым)

Исследователи в области космонавтики давно уже обратили внимание на точки Лагранжа. Например, в точке L1 системы Земля — Солнце удобно разместить космическую солнечную обсерваторию — она никогда не будет попадать в тень Земли, а значит, наблюдения могут вестись непрерывно. Точка L2 подходит для космического телескопа — здесь Земля почти полностью заслоняет солнечный свет, да и сама не мешает наблюдениям, поскольку обращена к L2 неосвещенной стороной. Точка L1 системы Земля — Луна удобна для размещения ретрансляционной станции в период освоения Луны. Она будет находиться в зоне прямой видимости для большей части обращённого к Земле полушария Луны, а для связи с ней понадобятся передатчики в десятки раз менее мощные, чем для связи с Землёй.

В настоящее время несколько космических аппаратов, в первую очередь, астрофизических обсерваторий, размещены или планируются к размещению в различных точках Лагранжа Солнечной системы[19]:

Точка L1 системы Земля—Солнце:

Точка L2 системы Земля—Солнце:

Другие точки Лагранжа:

  • в сентябре-октябре 2009 года два аппарата STEREO совершили транзит через точки L4 и L5[25].
  • JIMO[англ.] (Jupiter Icy Moons Orbiter) — отменённый проект NASA по исследованию спутников Юпитера, который должен был активно использовать систему точек Лагранжа для перехода от одного спутника к другому с минимальными затратами топлива. Этот манёвр получил название «лестница Лагранжа»[26].

Упоминание в культуре

Точки Лагранжа довольно популярны в научно-фантастических произведениях, посвящённых освоению космоса. Авторы часто помещают в них обитаемые или автоматические станции — см., например, «Возвращение к звёздам» Эдмонда Гамильтона, «Глубина в небе» Вернора Винджа, телесериал «Вавилон-5», игра Borderlands 2.

Иногда в точки Лагранжа помещают и более интересные объекты — мусорные свалки («Единение разумов» Чарльза Шеффилда, «Нептунова арфа» Андрея Балабухи), инопланетные артефакты («Защитник» Ларри Нивена) и даже целые планеты («Планета, с которой не возвращаются» Пола Андерсона). Айзек Азимов предлагал отправлять в точки Лагранжа радиоактивные отходы («Вид с высоты»).

См. также

Примечания

  1. Угловой размер Земли с расстояния 1,5 млн км — 29,3′, а Солнца с 1 а. е. + 1,5 млн км — 31,6′

Источники

  1. Lagrange, Joseph-Louis. Tome 6, Chapitre II: Essai sur le problème des trois corps // Oeuvres de Lagrange : [фр.]. — Gauthier-Villars, 1867–92. — P. 229–334.
  2. 1 2 Расчёт положения точек Лагранжа
  3. Расчёт положения точек L4 и L5 (другой вариант)
  4. ISEE-3/ICE profile by NASA Solar System Exploration
  5. NSSDC Master Catalog: ISEE 3 / ICE
  6. http://www.srl.caltech.edu/ACE/ASC/DATA/ace_dly_reprts/HTML/December_text_1997.html
  7. "Nation's first operational satellite in deep space reaches final orbit". NOAA. June 8, 2015. Дата обращения: 8 июня 2015.
  8. Zegler, Frank; Bernard Kutter.: Evolving to a Depot-Based Space Transportation Architecture. AIAA SPACE 2010 Conference & Exposition 4. AIAA (2 сентября 2010). — «L2 is in deep space far away from any planetary surface and hence the thermal, micrometeoroid, and atomic oxygen environments are vastly suberior to those in LEO. Thermodynamic stasis and extended hardware life are far easier to obtain without these punishing conditions seen in LEO. L2 is not just a great gateway – it is a great place to store propellants. … L2 is an ideal location to store propellants and cargos: it is close, high energy, and cold. More importantly, it allows the continuous onward movement of propellants from LEO depots thus subpressing their size and effectively minimizing the near-earth boiloff penalties». Дата обращения: 25 января 2011. Архивировано 24 августа 2011 года.
  9. Could There Be a Planet Hidden on the Opposite Side of our Sun? PopSci asks the scientist who has peered around it (англ.)
  10. Новости миссии STEREO на сайте НАСА
  11. Tantardini, Marco; Fantino, Elena (2010). "Spacecraft trajectories to the L3 point of the Sun–Earth three-body problem". Celestial Mechanics and Dynamical Astronomy (Springer). {{cite journal}}: Неизвестный параметр |coauthors= игнорируется (|author= предлагается) (справка)
  12. Астрономы обнаружили у Земли первый троянский спутник
  13. List of Jupiter Trojans
  14. List Of Neptune Trojans. Minor Planet Center. Дата обращения: 27 октября 2010. Архивировано 24 августа 2011 года.
  15. Belbruno, E.; J. Richard Gott III (2005). «Where Did The Moon Come From?». The Astronomical Journal 129 (3): 1724—1745. arXiv: astro-ph/0405372
  16. Впервые найдены две планеты на одной орбите
  17. Beatty, Kelly. Kepler Finds Planets in Tight Dance. Sky and Telescope (2011). Дата обращения: 11 марта 2011. Архивировано 25 января 2013 года.
  18. Астронет > Тесные двойные звезды на поздних стадиях эволюции
  19. 1 2 WMAP Observatory — Lagrange points (NASA)
  20. Lenta.ru о телескопе «Гершель»
  21. Космический телескоп «Планк» стал самым холодным объектом во Вселенной. Lenta.ru (6 июля 2009). Дата обращения: 14 августа 2010. Архивировано 24 августа 2011 года.
  22. The James Webb Space Telescope (NASA) (англ.)
  23. "Российско-немецкую обсерваторию "Спектр-РГ" запустят лишь в 2017 году". РИА Новости. 2013-04-22.
  24. Европейское космическое агентство в 2024 году запустит телескоп PLATO
  25. Space.com: The Search for the Solar System’s Lost Planet (англ.)
  26. Александр Сергеев. «Лестница Лагранжа» (врезка к статье Игоря Афанасьева и Дмитрия Воронцова «Межпланетная эквилибристика»), «Вокруг света», № 8 (2815) 2008.

Ссылки