Алгебраическая система: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
м подстановка даты в шаблон:Нет источника
запросы источников стояли справедливо — даже если понимать «алгебраическую структуру» формально по Бурбаки, то это совсем не оно
Строка 1: Строка 1:
'''Алгебраическая система''' в [[Универсальная алгебра|универсальной алгебре]] — [[множество]] <math>G</math> (''носитель'') с заданным на нём набором [[Операция (математика)|операций]] и [[Отношение (теория множеств)|отношений]] (''сигнатурой''). Алгебраическая система с пустым множеством отношений называется [[Алгебра (универсальная алгебра)|алгеброй]], а система с пустым множеством операций — [[модель (алгебра)|моделью]].
{{не путать|Решётка (алгебра)|синонимом термина решётка}}


<math>n</math>-арная операция на <math>G</math> — это [[Функция (математика)|отображение]] [[Прямое произведение|прямого произведения]] <math>n</math> экземпляров множества в само множество <math>G^n \to G</math>. По определению, нульарная операция — это просто выделенный элемент множества. Чаще всего рассматриваются [[унарная операция|унарные]] и [[бинарная операция|бинарные]] операции, поскольку с ними легче работать, но в связи с нуждами [[Топология|топологии]], [[Алгебра|алгебры]], [[Комбинаторика|комбинаторики]] постепенно накапливается техника работы с операциями большей [[арность|арности]], здесь в качестве примера можно привести теорию [[Операда|операд]] (клонов полилинейных операций) и алгебр над ними ([[Мультиоператорная алгебра|мультиоператорных алгебр]]).
'''Алгебраическая система'''<ref>{{книга
|автор =
|заглавие = Математический энциклопедический словарь
|место = М.
|издательство =
|год = 1988
|страницы=58—59
}}</ref> (или '''алгебраическая структура'''{{Нет АИ|21|10|2017}}) в [[Универсальная алгебра|универсальной алгебре]] — [[множество]] <math>G</math> (''носитель'') с заданным на нём набором [[Операция (математика)|операций]] и [[Отношение (теория множеств)|отношений]] (''сигнатура''), удовлетворяющим некоторой системе [[аксиома|аксиом]]{{Нет АИ|21|10|2017}}. Алгебраическая система с пустым множеством отношений называется [[Алгебра (универсальная алгебра)|алгеброй]], а система с пустым множеством операций — моделью.


Понятие возникло из наблюдений за общностью конструкций, характерных различных [[общая алгебра|общеалгебраических]] структур, таких как [[Группа (алгебра)|группы]], [[Кольцо (математика)|кольца]], [[Решётка (алгебра)|решётки]]; частности, таковы конструкции [[подсистема (универсальная алгебра)|подсистемы]] (обобщающей понятия [[подгруппа|подгруппы]], [[подкольцо|подкольца]], [[подрешётка|подрешётки]] соответственно), [[гомоморфизм]]а, изоморфизма, [[Факторсистема|факторсистемы]] (обобщающей соответственно конструкции [[Факторгруппа|фактогруппы]], [[Факторкольцо|факторкольца]], [[факторешётка|факторешётки]]), [[Идеал (алгебра)|идеалы]] ([[Нормальная подгруппа|нормальные подгруппы]], [[Двусторонний идеал|двусторонние идеалы колец]], [[идеал решётки|идеалы решёток]]). Эта общность изучается в самостоятельном разделе [[Общая алгебра|общей алгебры]] — [[универсальная алгебра|универсальной алгебре]], при этом получен ряд содержательных результатов, характерных для любых алгебраических систем, например, такова [[теорема о гомоморфзиме]], которая в случае алгебраической системы без заданных отношений — [[Алгебра (универсальная алгебра)|алгебры]], уточняется до [[теоремы об изоморфизме|теорем об изоморфизме]], известных ранее из [[Теория групп|теории групп]] и [[Теория колец|теории колец]].
''n''-арная операция на ''G'' — это [[Функция (математика)|отображение]] [[Прямое произведение|прямого произведения]] ''n'' экземпляров множества в само множество <math>G^n \to G</math>. По определению, ''0''-арная операция — это просто выделенный элемент множества. Чаще всего рассматриваются [[унарная операция|унарные]] и [[бинарная операция|бинарные]] операции, поскольку с ними легче работать. Но в связи с нуждами [[Топология|топологии]], [[Алгебра|алгебры]], [[Комбинаторика|комбинаторики]] постепенно накапливается техника работы с операциями большей [[арность|арности]], здесь в качестве примера можно привести теорию [[Операда|операд]] (клонов полилинейных операций) и алгебр над ними ([[Мультиоператорная алгебра|мультиоператорных алгебр]]).


Не все алгебраические структуры описываются алгебраическими системами без дополнительных конструкций, в качестве примера таковых можно упомянуть [[Коалгебра|коалгебры]], [[Биалгебра|биалгебры]], [[Алгебра Хопфа|алгебры Хопфа]] и [[Комодуль|комодули]] над ними; даже для определения таких классических структур, как [[Модуль над кольцом|модуля над кольцом]] или [[Алгебра над полем|алгебры над полем]], используются такие искусственные конструкции, как определение для каждого элемента кольца (поля) унарной операции умножения на этот элемент.
Для алгебраических систем естественным образом определяются [[морфизм]]ы как отображения, сохраняющие операцию. Таким образом определяются [[теория категорий|категории]] [[Группа (математика)|групп]], [[Кольцо (математика)|колец]], ''R''-[[Модуль над кольцом|модулей]] и т. п.

Если множество обладает структурой [[топологическое пространство|топологического пространства]], и операции являются непрерывными, то его называют '''топологической алгебраической системой'''. Так, в топологической группе операции умножения и взятия обратного элемента являются непрерывными.

Не все алгебраические конструкции описываются ''алгебраическими системами'', в качестве примера таковых можно упомянуть [[Коалгебра|коалгебры]], [[Биалгебра|биалгебры]], [[Алгебра Хопфа|алгебры Хопфа]] и [[Комодуль|комодули]] над ними.


== Основные классы алгебраических систем ==
== Основные классы алгебраических систем ==
* [[Множество]] можно считать вырожденной алгебраической системой с пустым набором операций и отношений<ref name="Kurosh">Курош А. Г. Общая алгебра. — М.: Наука, 1974. С.15</ref>.
* [[Множество]] можно считать вырожденной алгебраической системой с пустым набором операций и отношений<ref name="Kurosh">Курош А. Г. Общая алгебра. — М.: Наука, 1974. С.15</ref>.


=== Группоиды, полугруппы, группы ===
=== Группоиды, полугруппы, группы ===
Строка 32: Строка 21:


=== Кольца ===
=== Кольца ===
* [[Кольцо (алгебра)|Кольцо]] — структура с двумя бинарными операциями (абелева группа по сложению с заданной второй ассоциативной бинарной операцией — умножением), в которой выполняется закон [[дистрибутивность|дистрибутивности]]: <math> a\cdot (b+c) = a\cdot b + a\cdot c,\quad (a+b)\cdot c = a\cdot c + b\cdot c</math>.
* [[Кольцо (алгебра)|Кольцо]] — структура с двумя бинарными операциями (абелева группа по сложению с заданной второй ассоциативной бинарной операцией — умножением), в которой выполняется закон [[дистрибутивность|дистрибутивности]]: <math> a\cdot (b+c) = a\cdot b + a\cdot c,\quad (a+b)\cdot c = a\cdot c + b\cdot c</math>.
* [[Коммутативное кольцо]] — кольцо с коммутативным умножением.
* [[Коммутативное кольцо]] — кольцо с коммутативным умножением.
* [[Целостное кольцо]] — кольцо, в котором произведение двух ненулевых элементов не равно нулю.
* [[Целостное кольцо]] — кольцо, в котором произведение двух ненулевых элементов не равно нулю.
Строка 43: Строка 32:


=== Алгебры ===
=== Алгебры ===
* [[Алгебра (алгебраическая система)|Алгебра]] — [[линейное пространство]] с [[билинейное отображение|билинейной]] [[дистрибутивность|дистрибутивной]] операцией умножения, иначе говоря, кольцо с согласованной структурой [[Линейное пространство|линейного пространства]]
* [[Алгебра (алгебраическая система)|Алгебра]] — [[линейное пространство]] с [[билинейное отображение|билинейной]] [[дистрибутивность|дистрибутивной]] операцией умножения, иначе говоря, кольцо с согласованной структурой [[Линейное пространство|линейного пространства]]
* [[Ассоциативная алгебра]] — алгебра с ассоциативным умножением
* [[Ассоциативная алгебра]] — алгебра с ассоциативным умножением
* [[Алгебра термов]]
* [[Алгебра термов]]
Строка 66: Строка 55:


== Литература ==
== Литература ==
* {{Книга:Общая алгебра|6}}
* П. Кон «Универсальная алгебра», — М.: Мир, 1969, 351 с
* {{книга
* А. И. Мальцев «Алгебраические системы», — М., Наука, 1970 г., 392 стр. с илл.
|автор = [[Кон, Пол Мориц|Кон П.]]
* «Общая алгебра, в 2-х томах (Серия: Справочная математическая библиотека)», В. А. Артамонов и др., под редакцией Л. А. Скорнякова, — М.: Наука, Физматлит, 1990—1991, 592 с + 480 с.
|заглавие = Универсальная алгебра

|ссылка =
|ответственный =
|место = М.
|издательство = [[Мир (издательство)|Мир]]
|год = 1969
|том =
|страниц = 351
|страницы =
|isbn =
|ref = Кон
}}
* {{книга
|автор = [[Мальцев, Анатолий Иванович|Мальцев А. И.]]
|заглавие = Алгебраические системы
|место = М.
|издательство = [[Наука (издательство)|Наука]]
|год = 1970
|страниц = 392
|тираж = 17 500
|ref = Мальцев
}}
__NOTOC__
[[Категория:Универсальная алгебра]]
[[Категория:Универсальная алгебра]]

Версия от 15:51, 12 января 2018

Алгебраическая система в универсальной алгебре — множество (носитель) с заданным на нём набором операций и отношений (сигнатурой). Алгебраическая система с пустым множеством отношений называется алгеброй, а система с пустым множеством операций — моделью.

-арная операция на  — это отображение прямого произведения экземпляров множества в само множество . По определению, нульарная операция — это просто выделенный элемент множества. Чаще всего рассматриваются унарные и бинарные операции, поскольку с ними легче работать, но в связи с нуждами топологии, алгебры, комбинаторики постепенно накапливается техника работы с операциями большей арности, здесь в качестве примера можно привести теорию операд (клонов полилинейных операций) и алгебр над ними (мультиоператорных алгебр).

Понятие возникло из наблюдений за общностью конструкций, характерных различных общеалгебраических структур, таких как группы, кольца, решётки; частности, таковы конструкции подсистемы (обобщающей понятия подгруппы, подкольца, подрешётки соответственно), гомоморфизма, изоморфизма, факторсистемы (обобщающей соответственно конструкции фактогруппы, факторкольца, факторешётки), идеалы (нормальные подгруппы, двусторонние идеалы колец, идеалы решёток). Эта общность изучается в самостоятельном разделе общей алгебры — универсальной алгебре, при этом получен ряд содержательных результатов, характерных для любых алгебраических систем, например, такова теорема о гомоморфзиме, которая в случае алгебраической системы без заданных отношений — алгебры, уточняется до теорем об изоморфизме, известных ранее из теории групп и теории колец.

Не все алгебраические структуры описываются алгебраическими системами без дополнительных конструкций, в качестве примера таковых можно упомянуть коалгебры, биалгебры, алгебры Хопфа и комодули над ними; даже для определения таких классических структур, как модуля над кольцом или алгебры над полем, используются такие искусственные конструкции, как определение для каждого элемента кольца (поля) унарной операции умножения на этот элемент.

Основные классы алгебраических систем

  • Множество можно считать вырожденной алгебраической системой с пустым набором операций и отношений[1].

Группоиды, полугруппы, группы

  • Группоид — множество с одной бинарной операцией , обычно называемой умножением.
  • Правая квазигруппа — группоид, в котором возможно правое деление, то есть уравнение имеет единственное решение для любых и .
  • Квазигруппа — одновременно правая и левая квазигруппа.
  • Лупа — квазигруппа с нейтральным элементом , таким, что .
  • Полугруппа — группоид, в котором умножение ассоциативно: .
  • Моноид — полугруппа с нейтральным элементом.
  • Группа — моноид, в котором для каждого элемента a группы можно определить обратный элемент a−1, такой, что .
  • Абелева группа — группа, в которой операция коммутативна, то есть, . Операцию в абелевой группе часто называют сложением ('+').

Кольца

  • Кольцо — структура с двумя бинарными операциями (абелева группа по сложению с заданной второй ассоциативной бинарной операцией — умножением), в которой выполняется закон дистрибутивности: .
  • Коммутативное кольцо — кольцо с коммутативным умножением.
  • Целостное кольцо — кольцо, в котором произведение двух ненулевых элементов не равно нулю.
  • Тело — кольцо, в котором ненулевые элементы образуют группу по умножению.
  • Поле — коммутативное кольцо, являющееся телом.
  • Полукольцо — похоже на кольцо, но без обратимости сложения.
  • Почтикольцо — также обобщение кольца, отличающееся от обычного кольца отсутствием требования коммутативности сложения и отсутствием требования дистрибутивности умножения по сложению (левой или правой)

Алгебры

Решётки

Примечания

  1. Курош А. Г. Общая алгебра. — М.: Наука, 1974. С.15

Литература

  • Артамонов В. А. . Глава VI. Универсальные алгебры // Общая алгебра / Под общ. ред. Л. А. Скорнякова. — М.: Наука, 1991. — Т. 2. — С. 295—367. — 480 с. — (Справочная математическая библиотека). — 25 000 экз. — ISBN 5-9221-0400-4.
  • Кон П. Универсальная алгебра. — М.: Мир, 1969. — 351 с.
  • Мальцев А. И. Алгебраические системы. — М.: Наука, 1970. — 392 с. — 17 500 экз.