Фосфоенолпируваткарбоксикиназа
Фосфоенолпируваткарбоксикиназа | |
---|---|
| |
Идентификаторы | |
Символ | PEPCK |
Pfam | PF00821 |
InterPro | IPR008209 |
PROSITE | PDOC00421 |
SCOP | 1khf |
SUPERFAMILY | 1khf |
Доступные структуры белков | |
Pfam | структуры |
PDB | RCSB PDB; PDBe; PDBj |
PDBsum | 3D-модель |
Фосфоенолпируваткарбоксикиназа, также ФЕП-карбоксикиназа (англ. Phosphoenolpyruvate carboxykinase, сокр. PEPCK) — фермент (КФ 4.1.1.32) из семейства декарбоксилаз (класс лиазы), катализирующий реакцию декарбоксилирования-фосфорилирования молекул оксалоацетата с образованием фосфоенолпирувата, углекислого газа[1][2][3] и GDP. В качестве источника неорганического фосфата фермент использует молекулы GTP, а кофактором могут служить ионы Mn2+. Схема реакции:
- Оксалоацетат + GTP ↔ Фосфоенолпируват + СО2 + GDP.
Данная реакция относится к так называемым «обходным реакциям» гликолиза. ФЕП-карбоксикиназа играет ключевую роль в процессе глюконеогенеза. Существует две изоформы фермента, цитозольная и митохондриальная.
Структура
У человека присутствуют два изофермента ФЕП-карбоксикиназы: цитозольный (SwissProt P35558) и митохондриальный (SwissProt Q16822), которые имеют 63,4 % идентичности. Цитозольная форма играет важную роль в глюконеогенезе. Однако известен механизм переноса фосфоенолпирувата (PEP) из митохондрий в цитозоль с помощью специфических мембранных транспортных белков[4][5][6][7][8]. В переносе PEP через внутреннюю митохондриальную мембрану участвует митохондриальный трикарбоксилатный транспортный белок и в меньшей степени переносчик адениновых нуклеотидов. Выдвигается также предположение о возможности существования транспортёра PEP/пирувата[9].
Рентгеновские структуры PEPCK дают представление о структуре и механизме каталитической активности PEPCK. Митохондриальная изоформа PEPCK из куриной печени в комплексе с ионами Mn2+, Mn2+-фосфоенолпируватом (PEP) и Mn2+-GDP даёт информацию о её структуре и о том, как этот фермент катализирует реакции[10]. Delbaere et al. (2004 год) обнаружили PEPCK в клетках E. coli и выявили активный сайт, расположенный между C-концевым доменом и N-концевым доменом. Было обнаружено, что активный центр фермента закрывается при вращении этих доменов[11].
В процессе действия ФЕП-карбоксикиназы происходит перенос фосфорильных групп, чему, вероятно, способствует заслонённая конформация фосфорильных групп при связывании молекул ATP с ферментом[11].
Поскольку заслонённая конформация обладает высокой энергией, перенос фосфорильных групп имеет пониженную энергию активации, что означает эти группы будут переноситься с большей легкостью. Этот перенос, вероятно, происходит по механизму, аналогичному нуклеофильному замещению SN2[11].
Механизм катализа
Регуляция
У человека
Усиление экспрессии и активации PEPCK-С (цитозольная форма) происходит под действием многих факторов. Транскрипция гена PEPCK-C стимулируется глюкагоном, глюкокортикоидами, ретиноевой кислотой и аденозин-3',5'-монофосфатом (цАМФ), а инсулин её подавляет[12]. Из этих факторов инсулин, гормон, дефицит которого наблюдается при сахарном диабете 1-го типа, считается доминирующим, поскольку он подавляет транскрипцию многих стимулирующих элементов[12]. Активность PEPCK также ингибируется гидразинсульфатом, и это ингибирование снижает скорость глюконеогенеза[13].
При длительном ацидозе в клетках щёточной каймы проксимальных канальцев почек повышается активность PEPCK-C, что приводит к выделению большего количества аммиака NH3 и, соответственно, к образованию большего количества гидрокарбонат ионов HCO3-[14].
ГТФ-специфическая активность PEPCK наиболее высока при наличии двухвалентных ионов — Mn2+ и Mg2+[15]. Кроме того, гиперреактивный цистеин (Cys307) фермента участвует в связывании Mn2+ с активным сайтом[10].
У растений
Как уже говорилось ранее, при поливе растений хлористым аммонием с низким pH концентрация ФЭП-карбоксикиназы увеличивалась, хотя при высоком pH такого эффекта не наблюдалось
Функции
Глюконеогенез
PEPCK-C (цитозольная форма) катализирует необратимый этап глюконеогенеза — процесс синтеза глюкозы. Поэтому считается, что этот фермент играет важную роль в гомеостазе глюкозы, что подтверждается на примере лабораторных мышей, заболевших сахарным диабетом 2-го типа в результате сверхэкспрессии гена PEPCK-C[16].
Роль PEPCK-C в глюконеогенезе может быть опосредована циклом лимонной кислоты, активность которого, как было установлено, напрямую зависит от количества PEPCK-C[17].
Уровни PEPCK-C сами по себе не сильно коррелировали с глюконеогенезом в печени мышей, как предполагали предыдущие исследования[17]. В то время как печень мыши почти исключительно экспрессирует PEPCK-C, у людей в равной степени присутствует митохондриальный изофермент (PEPCK-M). PEPCK-M сам по себе обладает глюконеогенным потенциалом[2]. Следовательно, роль PEPCK-C и PEPCK-M в глюконеогенезе может быть более сложной и включать больше факторов, чем считалось ранее.
Клиническое значение
PEPCK до недавнего времени не рассматривался в исследованиях рака. Было показано, что в образцах опухолей человека и линиях раковых клеток человека (клетки рака молочной железы, толстой кишки и лёгких) PEPCK-M, а не PEPCK-C, экспрессировался на достаточных уровнях, чтобы играть соответствующую метаболическую роль[1][18]. Таким образом, PEPCK-M может играть роль в раковых клетках, особенно при ограничении питательных веществ или других стрессовых условиях.
Примечания
- ↑ 1 2 Méndez-Lucas A, Hyroššová P, Novellasdemunt L, Viñals F, Perales JC (August 2014). "Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) is a pro-survival, endoplasmic reticulum (ER) stress response gene involved in tumor cell adaptation to nutrient availability". The Journal of Biological Chemistry. 289 (32): 22090—102. doi:10.1074/jbc.M114.566927. PMC 4139223. PMID 24973213.
- ↑ 1 2 Méndez-Lucas A, Duarte JA, Sunny NE, Satapati S, He T, Fu X, et al. (July 2013). "PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis". Journal of Hepatology. 59 (1): 105—13. doi:10.1016/j.jhep.2013.02.020. PMC 3910155. PMID 23466304.
- ↑ Chakravarty K, Cassuto H, Reshef L, Hanson RW (2005). "Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C". Critical Reviews in Biochemistry and Molecular Biology. 40 (3): 129—54. doi:10.1080/10409230590935479. PMID 15917397. S2CID 633399.
- ↑ Robinson BH (May 1971). "Transport of phosphoenolpyruvate by the tricarboxylate transporting system in mammalian mitochondria". FEBS Letters. 14 (5): 309—312. doi:10.1016/0014-5793(71)80287-9. PMID 11945784. S2CID 9617975.
- ↑ Söling HD, Walter U, Sauer H, Kleineke J (December 1971). "Effects of synthetic analogues of phosphoenolpyruvate on muscle and liver pyruvate kinase, muscle enolase, liver phosphoenolpyruvate carboxykinase and on the intra-/extra-mitochondrial tricarboxylic acid carrier transport system". FEBS Letters. 19 (2): 139—143. doi:10.1016/0014-5793(71)80498-2. PMID 11946196. S2CID 40637963.
- ↑ Kleineke J, Sauer H, Söling HD (January 1973). "On the specificity of the tricarboxylate carrier system in rat liver mitochondria". FEBS Letters. 29 (2): 82—6. doi:10.1016/0014-5793(73)80531-9. PMID 4719206. S2CID 30730789.
- ↑ Shug AL, Shrago E (July 1973). "Inhibition of phosphoenolpyruvate transport via the tricarboxylate and adenine nucleotide carrier systems of rat liver mitochondria". Biochemical and Biophysical Research Communications. 53 (2): 659—65. doi:10.1016/0006-291X(73)90712-2. PMID 4716993.
- ↑ Sul HS, Shrago E, Shug AL (January 1976). "Relationship of phosphoenolpyruvate transport, acyl coenzyme A inhibition of adenine nucleotide translocase and calcium ion efflux in guinea pig heart mitochondria". Archives of Biochemistry and Biophysics. 172 (1): 230—7. doi:10.1016/0003-9861(76)90071-0. PMID 1252077.
- ↑ Satrústegui J, Pardo B, Del Arco A (January 2007). "Mitochondrial transporters as novel targets for intracellular calcium signaling". Physiological Reviews. 87 (1): 29—67. doi:10.1152/physrev.00005.2006. PMID 17237342.
- ↑ 1 2 Holyoak T, Sullivan SM, Nowak T (July 2006). "Structural insights into the mechanism of PEPCK catalysis". Biochemistry. 45 (27): 8254—63. doi:10.1021/bi060269g. PMID 16819824.
- ↑ 1 2 3 Delbaere LT, Sudom AM, Prasad L, Leduc Y, Goldie H (March 2004). "Structure/function studies of phosphoryl transfer by phosphoenolpyruvate carboxykinase". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1697 (1—2): 271—8. doi:10.1016/j.bbapap.2003.11.030. PMID 15023367.
- ↑ 1 2 O'Brien RM, Lucas PC, Forest CD, Magnuson MA, Granner DK (August 1990). "Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription". Science. 249 (4968): 533—7. Bibcode:1990Sci...249..533O. doi:10.1126/science.2166335. PMID 2166335.
- ↑ Mazzio E, Soliman KF (January 2003). "The role of glycolysis and gluconeogenesis in the cytoprotection of neuroblastoma cells against 1-methyl 4-phenylpyridinium ion toxicity". Neurotoxicology. 24 (1): 137—47. doi:10.1016/S0161-813X(02)00110-9. PMID 12564389.
- ↑ Walter F. Boron. Medical Physiology: A Cellular And Molecular Approach. — Elsevier/Saunders, 2005. — P. 858. — ISBN 978-1-4160-2328-9.
- ↑ Ошибка в сносках?: Неверный тег
<ref>
; для сносокAich
не указан текст - ↑ Vanderbilt Medical Center. "Granner Lab, PEPCK Research." 2001. Online. Internet. Accessed 10:46PM, 4/13/07. www.mc.vanderbilt.edu/root/vumc.php?site=granner&doc=119
- ↑ 1 2 Burgess SC, He T, Yan Z, Lindner J, Sherry AD, Malloy CR, et al. (April 2007). "Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver". Cell Metabolism. 5 (4): 313—20. doi:10.1016/j.cmet.2007.03.004. PMC 2680089. PMID 17403375.
- ↑ Leithner K, Hrzenjak A, Trötzmüller M, Moustafa T, Köfeler HC, Wohlkoenig C, et al. (February 2015). "PCK2 activation mediates an adaptive response to glucose depletion in lung cancer". Oncogene. 34 (8): 1044—50. doi:10.1038/onc.2014.47. PMID 24632615. S2CID 11902696.