Матрица сопротивлений

Материал из Википедии — свободной энциклопедии
Это текущая версия страницы, сохранённая Brsbrs (обсуждение | вклад) в 19:30, 28 ноября 2023 (Физический смысл: орфография, опечатки, ё). Вы просматриваете постоянную ссылку на эту версию.
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Матрица сопротивлений — матрица, применяемая для описания устройств СВЧ, связывающая линейной зависимостью комплексные амплитуды напряжений и силы тока в клеммных плоскостях эквивалентного многополюсника:

Устройство СВЧ как многополюсник

[править | править код]

Описание устройства СВЧ может производиться без учёта его внутренней структуры и геометрии. Для инженерного расчёта любое линейное пассивное устройство может быть представлено в виде «чёрного ящика» — многополюсника, каждая пара клемм которого представляет определённый тип волн во всех линиях передачи, подключённых к этому устройству. На каждом входе эквивалентного многополюсника можно определить комплексные амплитуды напряжения и силы тока. Чаще всего ток и напряжение определяют через поперечные составляющие электрического и магнитного поля волны, распространяющейся в линии:

Здесь и  — собственные функции поперечных составляющих основных волн в n-входной линии. Напряжения и токи входят в нормированной форме:

[Вт½]
[Вт½]

 — характеристическое сопротивление основной волны в линии. Напряжение и ток в линии могут быть выражены через падающую и отражённую волны:

Падающая и отражённая волны также входят в нормированной форме и измеряются в Вт½.

Матричное уравнение

[править | править код]

Представив множества токов и напряжений на всех входах многополюсника в виде векторов, можно записать матричное уравнение связи напряжений и токов:

В алгебраической форме запись приобретёт вид

Физический смысл

[править | править код]

Чтобы выяснить физический смысл элементов матрицы сопротивлений, необходимо организовать специальный тестовый режим измерения токов и напряжений многополюсника, называемый режимом холостого хода (Х.Х.).

Смысл диагональных элементов (znn) матрицы сопротивлений станет ясен, если создать электрический ток in ≠ 0 (подключить источник тока к n-му входу многополюсника) и создать режим Х.Х. на всех прочих входах (то есть разомкнуть все прочие k = 1...N, kn входы многополюсника). В этом случае сила тока ik на k-х (разомкнутых) входах будет равна нулю, а напряжение и сила тока для n-го входа будут связаны законом Ома: un = znnin. Из выражения видно, что каждый n-й диагональный элемент матрицы рассеяния имеет тот же смысл, что и электрическое сопротивление n-го входа при условии одновременного Х.Х. на всех прочих входах.

В рассмотренном тестовом режиме напряжения на всех (n-м и k-х) входах не будут равны нулю, они будут пропорциональны силе тока in, создаваемого подключённым к n-му входу источником: uk = zknin, k = 1, ... , n, ... , N. Из этого выражения видно, что все элементы матрицы рассеяния служат коэффициентами пропорциональности между силой тока in в n-м входе и напряжением uk на k-м входе и имеют размерность электрического сопротивления (Ом). Диагональные элементы называют собственными сопротивлениями входов, внедиагональные — вносимыми сопротивлениями (вносимыми в k-й вход из n-го входа, первый индекс — "куда", второй — "откуда"). Эти названия подчёркивают тот факт, что в общем случае, при протекании тока по всем N входам многополюсника, напряжение un на каждом n-м входе зависит не только от силы тока in в этом входе (un пропорционально in, коэффициент пропорциональности — собственное сопротивление znn), но и от силы тока ik во всех прочих входах (un пропорционально также и ik, коэффициент пропорциональности — вносимое сопротивление znk). То есть напряжение на каждом входе не только зависит от "собственного" источника тока, но и "вносится" (наводится, получает добавку, зависит, изменяется) за счет протекания тока во всех прочих входах в силу наличия электрических межсоединений во внутренней электрической схеме многополюсника.

Таким образом, в целом матрица сопротивлений и матричное уравнение, связывающее напряжения и токи на входах многополюсника, являются обобщением закона Ома для участка цепи (то есть для двухполюсника) на случай многополюсника.

Литература

[править | править код]
  • Сазонов Д. М. Антенны и устройства СВЧ. Учеб. для радиотехнически специальностей вузов. — М.: Высш. шк, 1988. — P. 432. — ISBN 5-06-001149-6.