Алгоритм Гёрцеля
Алгоритм Гёрцеля (англ. Goertzel algorithm) — это специальная реализация дискретного преобразования Фурье (ДПФ) в форме рекурсивного фильтра. Данный алгоритм был предложен Г. Гёрцелем в 1958 году [1]. В отличие от быстрого преобразования Фурье, вычисляющего все частотные компоненты ДПФ, алгоритм Гёрцеля позволяет эффективно вычислить значение одного частотного компонента.
Алгоритм Гёрцеля является популярным алгоритмом для решения задачи детектирования и декодирования тональных сигналов в телефонии.
Варианты названия алгоритма
В русскоязычной литературе нет устоявшегося варианта транскрипции фамилии автора алгоритма. Распространены варианты «Алгоритм Герцеля», «Алгоритм Гертцеля», «Алгоритм Горцеля» и другие.
Описание алгоритма
Пусть — k-й частотный компонент компонент дискретного преобразования Фурье (здесь и далее будут использоваться обозначения, принятые в статье «Дискретное преобразование Фурье»). Для расчёта с помощью алгоритма Гёрцеля:
- Последовательно вычисляются члены последовательности для по рекуррентной формуле ,где ;
- Искомое значение частотного компонента получается как .
Доказательство алгоритма
Нужен ли вообще раздел с доказательством алгоритма?
Для удобства записи введём обозначение . Определение k-го частотного компонента дискретного преобразования Фурье тогда примет вид . Также заметим, что и для любого действительного выполняется равенство .
Преобразуем исходное определение :
Устойчивость и вычислительная эффективность алгоритма
Примечания
- ↑ G. Goertzel, "An Algorithm for the Evaluation of Finite Trigonometric Series," American Mathematical Monthly, Vol. 65, Jan. 1958, pp. 34-35.
Литература
- Эммануил С. Айфичер, Барри У. Джервис. Цифровая обработка сигналов: практический подход = Digital Signal Processing: A Practical Approach. — 2-е издание. — М.: Издательский дом «Вильямс», 2004. — 992 с. — ISBN 5-8459-0710-1.
- Блейхут Р. Быстрые алгоритмы цифровой обработки сигналов = Fast Algorithms for Digital Signal Processing. — М.: Мир, 1989. — 448 с. — ISBN 5-09-001009-2.