Фрактал
Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической.
Есть и другие определения фракталов.
Фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.[1]
Фрактал — самоподобное множество нецелой размерности.[1]
Термин
Следует отметить, что слово «вагинал» не является термином и не имеет общепринятого строгого математического определения. Оно может употребляться, когда рассматриваемая фигура обладает какими-либо из перечисленных ниже свойств:
- Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких, как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.
- Является самоподобной или приближённо самоподобной.
- Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.
Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.
Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.
История
Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».
Классификация[1]
- Геометрические фракталы
- Кривая Коха (снежинка Коха)
- Кривая Леви
- Кривая Гильберта
- Ломаная (кривая) дракона (Фрактал Хартера-Хейтуэя)
- Множество Кантора
- Треугольник Серпинского
- Ковёр Серпинского
- Дерево Пифагора
- Круговой фрактал
- Стохастические фракталы
- Рукотворные фракталы
- Природные фракталы
- Детерминированные фракталы
- Недетерминированные фракталы
Примеры
Самоподобные множества с необычными свойствами в математике
Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:
- множество Кантора — нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины.
- треугольник Серпинского и ковёр Серпинского — аналоги множества Кантора на плоскости.
- губка Менгера — аналог множества Кантора в трёхмерном пространстве;
- примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции.
- кривая Коха — несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;
- кривая Пеано — непрерывная кривая, проходящая через все точки квадрата.
- траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум.
Рекурсивная процедура получения фрактальных кривых
Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены три первых шага этой процедуры для кривой Коха.
Примерами таких кривых служат:
С помощью похожей процедуры получается дерево Пифагора.
Фракталы как неподвижные точки сжимающих отображений
Свойство самоподобия можно математически строго выразить следующим образом. Пусть — сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости:
Можно показать, что отображение является сжимающим отображением на множестве компактов с метрикой Хаусдорфа. Следовательно, по теореме Банаха, это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.
Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения — отображения подобия, а — число звеньев генератора.
Для треугольника Серпинского и отображения , , — гомотетии с центрами в вершинах правильного треугольника и коэффициентом 1/2. Легко видеть, что треугольник Серпинского переходит в себя при отображении .
В случае, когда отображения — преобразования подобия с коэффициентами , размерность фрактала (при некоторых дополнительных технических условиях) может быть вычислена как решение уравнения . Так, для треугольника Серпинского получаем .
По той же теореме Банаха, начав с любого компактного множества и применяя к нему итерации отображения , мы получим последовательность компактов, сходящихся (в смысле метрики Хаусдорфа) к нашему фракталу.
Фракталы в комплексной динамике
Фракталы естественным образом возникают при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функции комплексной переменной на плоскости. Первые исследования в этой области относятся к началу 20 века и связаны с именами Фату и Жюлиа.
Пусть F(z) — многочлен, z0 — комплексное число. Рассмотрим следующую последовательность: z0, z1=F(z0), z2=F(z1), z3=F(z2), ...
Нас интересует поведение этой последовательности при стремлении n к бесконечности. Эта последовательность может:
- стремиться к бесконечности,
- стремиться к конечному пределу,
- демонстрировать в пределе циклическое поведение, например: z1, z2, z3, z1, z2, z3, ...
- вести себя хаотично, то есть не демонстрировать ни один из трёх упомянутых типов поведения.
Множества значений z0, для которых последовательность демонстрирует один конкретный тип поведения, а также множества точек бифуркации между различными типами, часто обладают фрактальными свойствами.
Так, множество Жюлиа — множество точек бифуркации для многочлена F(z)=z2+c (или другой похожей функции), то есть тех значений z0, для которых поведение последовательности {zn} может резко меняться при сколь угодно малых изменениях z0.
Другой вариант получения фрактальных множеств — введение параметра в многочлен F(z) и рассмотрение множества тех значений параметра, при которых последовательность {zn} демонстрирует определённое поведение при фиксированном z0. Так, множество Мандельброта — это множество всех , при которых {zn} для F(z)=z2+c и z0 не стремится к бесконечности.
Ещё один известный пример такого рода — бассейны Ньютона.
Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления {zn} к бесконечности (определяемой, скажем, как наименьший номер n, при котором |zn| превысит фиксированную большую величину A.
Биоморфы — фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.
Стохастические фракталы
Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:
- траектория броуновского движения на плоскости и в пространстве;
- граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.
- эволюции Шрамма-Лёвнера — конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики, например, в модели Изинга и перколяции.
- различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма — пример использования такого фрактала в компьютерной графике.
Фрактальная монотипия, или стохатипия — направления в изобразительном искусстве, заключающиеся в получении изображения случайного фрактала.
В природе
- Бронхиальное дерево
- Сеть кровеносных сосудов
- Деревья
Применение
Естественные науки
В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).
Литература
Среди литературных произведений находят такие, которые обладают текстуальной, структурной или семантической фрактальной природой. В текстуальных фракталах потенциально бесконечно повторяются элементы текста:
- неразветвляющееся бесконечное дерево, тождественное само себе с любой итерации («У попа была собака…», «Притча о философе, которому снится, что он бабочка, которой снится, что она философ, которому снится…», «Ложно утверждение, что истинно утверждение, что ложно утверждение…»)
- неразветвляющиеся бесконечные тексты с вариациями («У Пегги был весёлый гусь…») и тексты с наращениями («Дом, который построил Джек»).
В структурных фракталах схема текста потенциально фрактальна:
- венок сонетов (15 стихотворений), венок венков сонетов (225 стихотворений), венок венков венков сонетов (2455 стихотворений)
- «рассказы в рассказе» («Книга тысячи и одной ночи», Я. Потоцкий «Рукопись, найденная в Сарагосе»)
- предисловия, скрывающие авторство (У. Эко «Имя розы»)
- Т. Стоппард «Розенкранц и Гильденстерн мертвы» (сцена с представлением перед королём).
- К. Прист «Лотерея» (иногда встречается под названием «Подтверждение»): молодой писатель сочиняет роман о своем двойнике из параллельного мира, который в свою очередь пишет книгу о своем двойнике из параллельной Вселенной, сочиняющем…
- Б. Олдисс «Доклад о вероятности А»
В семантических и нарративных фракталах автор рассказывает о бесконечном подобии части целому:
- Х. Л. Борхес «В кругу развалин»
- Х. Кортасар «Жёлтый цветок»
- Ж. Перек «Кунсткамера»
Радиотехника
Фрактальные антенны
Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил их серийный выпуск.
Информатика
Сжатие изображений
Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован[источник не указан 5198 дней] фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.
Компьютерная графика
Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких, как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений, см. Генератор фракталов (программа).
Децентрализованные сети
Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.
Экономика и финансы
А. А. Алмазов в своей книге «Фрактальная теория. Как поменять взгляд на рынки» предложил способ использования фракталов при анализе биржевых котировок, в частности — на рынке Форекс[2].
Галерея
См. также
- Квазифрактал
- Мультифрактал
- wikibooks: ru: Размер и размерность
- Алгоритм фрактального сжатия
- Теорема о рекурсивных системах
- Фрактальная гомогенность
- Измерение длины береговой линии
Примечания
Литература
- А. А. Кириллов. Повесть о двух фракталах. — Летняя школа «Современная математика». — Дубна, 2007.
- Мандельброт Б. Фрактальная геометрия природы. — М.: «Институт компьютерных исследований», 2002.
- Пайтген Х.-О., Рихтер П. Х. Красота фракталов. — М.: «Мир», 1993.
- Федер Е. Фракталы. — М: «Мир», 1991.
- Фоменко А. Т. Наглядная геометрия и топология. — М.: изд-во МГУ, 1993.
- Фракталы в физике. Труды 6-го международного симпозиума по фракталам в физике, 1985. — М.: «Мир», 1988.
- Шредер М. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая. — Ижевск: «РХД», 2001.
- Кроновер Р. М. Фракталы и хаос в динамических системах. Основы теории.
- Мандельброт Бенуа, Ричард Л. Хадсон. (Не)послушные рынки: фрактальная революция в финансах = The Misbehavior of Markets. — М.: «Вильямс», 2006. — С. 400. — ISBN 5-8459-0922-8.
Ссылки
- Всё о фракталах — десятки статей посвященные фракталам, картинная галерея, и программы для создания
- Фрактальные множества — Очень подробная и качественная статья, начиная с комплексных чисел (Санкт-Петербургский государственный университет: ПМ-ПУ)
- Красивая жизнь комплексных чисел
- Фракталы и теория хаоса
- Доступно о фракталах
- Фракталы и turtle-графика
- Фракталы, мультифракталы и не только
- Обаяние самоподобия
- «Фракталы. Поиски новых размерностей» (англ. Fractals. Hunting The Hidden Dimension) — научно-популярный фильм, снятый в 2008 г.