Калибровка векторного потенциала

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая MerlIwBot (обсуждение | вклад) в 02:22, 13 декабря 2012 (бот добавил: zh:庫侖規範). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Калибро́вка ве́кторного потенциа́ла — наложение дополнительных условий, позволяющих однозначно вычислить векторный потенциал электромагнитного поля для решения тех или иных физических задач.

Примеры калибровок

Кулоновская калибровка

Кулоновская калибровка — выбор векторного потенциала магнитного поля в виде

Эта калибровка применяется для рассмотрения нерелятивистских магнитостатических задач.

Калибровка Лоренца

Калибровка Лоренца[1] — выбор векторного потенциала магнитного поля в виде

, где  — электростатический потенциал.

Эта калибровка применяется для рассмотрения динамических задач. Калибровка Лоренца сохраняется при преобразованиях Лоренца и в ковариантной форме может быть записана как

Калибровка Ландау

Калибровка Ландау — выбор векторного потенциала магнитного поля в виде , где  — магнитное поле, а  — единичный орт по направлению оси y.

Используется для удобства при решении уравнения Шрёдингера в магнитном поле, поскольку позволяет разделить переменные в декартовой системе координат и получить так называемые уровни Ландау.

Симметричная калибровка

Симметричная калибровка — выбор векторного потенциала магнитного поля в виде , где  — вектор магнитного поля, а  — радиус-вектор.

Калибровка Лондонов

Калибровка Лондонов — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условия

, где -- вектор нормали к поверхности сверхпроводника.

В этой калибровке упрощается запись уравнения Лондонов для линейной электродинамики сверхпроводников.

Калибровка Вейля

Калибровка Вейля — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условие

Другие названия — калибровка φ=0

Калибровка Пуанкаре

Калибровка Пуанкаре (мультиполярная калибровка) — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условие

Калибровка Фока — Швингера

Калибровка Фока — Швингера — выбор векторного потенциала магнитного поля таким образом, чтобы выполнялись условие

,

или

См. также

Примечания

  1. Впервые предложена Людвигом В. Лоренцем.