Символы Кристоффеля

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Bezik (обсуждение | вклад) в 08:30, 10 августа 2014 (См. также: - то, что уже связано по тексту статьи). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Символы Кристоффеля являются координатными выражениями аффинной связности, в частности связности Леви-Чивиты. Названы в честь Элвина Бруно Кристоффеля (18291900),

Символы Кристоффеля используются в дифференциальной геометрии, общей теории относительности и близких к ней теориях гравитации.

Символы Кристоффеля появляются в координатном выражении тензора кривизны. При этом сами символы тензорами не являются.

Ниже используется правило суммирования Эйнштейна, то есть по повторяющимся индексам подразумевается суммирование.

Элементарное понятие о символах Кристоффеля

Рис. 1. Параллельный перенос вдоль луча
Рис. 2. Параллельный перенос вдоль дуги

Введение

Наглядное представление о символах Кристоффеля можно получить на примере полярной системы координат. В этой системе координатами точки являются расстояние от неё до полюса и угол направления от полярной оси.

Координатами вектора, как и в прямоугольной системе координат, следует считать дифференциалы (бесконечно малые приращения) этих величин: .

Пусть есть вектор с координатами , где имеет геометрический смысл проекции вектора на радиальный луч (проходящий через начало вектора), а  — угол, под которым вектор виден из полюса.

В прямоугольной системе координат компоненты вектора не меняются при параллельном переносе. В полярной системе координат это не так (см. рисунки). Символы Кристоффеля как раз и выражают изменение компонент вектора при его параллельном переносе.

Параллельный перенос вдоль координатных линий

При смещении вектора вдоль радиального луча на расстояние , его компонента , очевидно, не меняется, но вторая его координата () уменьшается (рис. 1). Величина вектора остаётся неизменной, поэтому . Отсюда получается (пренебрежением величинами второго и большего порядков малости):

При параллельном переносе вдоль дуги меняются обе координаты и (рис. 2). Очевидно, , , и поэтому:

Кроме этого, так как , , и , то

Параллельный перенос в произвольном направлении

При произвольном малом смещении вектора (когда меняются и , и ) изменения компонент надо складывать:

Полученные выражения имеют общую структуру: изменение компонент вектора пропорционально всем компонентам вектора и пропорционально величине сдвига вектора. Коэффициенты пропорциональности (без общего минуса) и называются символами Кристоффеля.

В более общих обозначениях , , и можно записать (имея ввиду сумму по повторяющимся индексам):

Здесь символы Кристоффеля , , а все остальные равны нулю.

В прямоугольной системе координат все символы Кристоффеля равны нулю, так как компоненты вектора не изменяются при параллельном переносе. Из этого можно сделать вывод, что символы Кристоффеля не образуют тензор: если тензор равен нулю в какой-либо системе координат, то он равен нулю во всех остальных системах координат.

Символы Кристоффеля первого и второго рода

Символы Кристоффеля второго рода можно определить как коэффициенты разложения ковариантной производной координатных векторов по базису:

Символы Кристоффеля первого рода

Выражение через метрический тензор

Символы Кристоффеля связности Леви-Чивиты для карты могут быть определены из отсутствия кручения, то есть:

.

и того условия, что ковариантная производная метрического тензора равна нулю:

.

Для сокращения записи символ набла и символы частных производных часто опускаются, вместо них перед индексом, по которому производится дифференцирование, ставится точка с запятой «;» в случае ковариантной и запятая ", " в случае частной производной. Таким образом, выражение выше можно также записать как:

.

Явные выражения для символов Кристоффеля второго рода получаются, если сложить это уравнение и другие два уравнения, которые получаются циклической перестановкой индексов:

,

где  — контравариантное представление метрики, которое есть матрица, обратная к , находится путём решения системы линейных уравнений .

Связь с безындексными обозначениями

Формальные, безындексные определения связности абстрагируются от конкретной системы координат и поэтому более предпочтительны при доказательстве математических теорем.

Пусть X и Y — векторные поля с компонентами и . Тогда k-я компонента ковариантной производной поля Y по отношению к X задается выражением

Условие отсутствия кручения у связности, :, эквивалентно симметричности символов Кристоффеля по двум нижним индексам:

Замена координат

Несмотря на то, что символы Кристоффеля записываются в тех же обозначениях, что и компоненты тензоров, они не являются тензорами, потому что не преобразуются как тензоры при переходе в новую систему координат. В частности, выбором координат в окрестности любой точки символы Кристоффеля могут быть локально сделаны равными нулю (или обратно ненулевыми), что невозможно для тензора.

При замене переменных на , базисные векторы преобразуются ковариантно,

откуда следует формула преобразования символов Кристоффеля:

Черта означает систему координат y. Таким образом, символы Кристоффеля не преобразуются как тензор. Они представляют собой более сложный геометрический объект в касательном пространстве с нелинейным законом преобразования от одной системы координат к другой.

Примечание. Можно заметить, например, из определения, что первый индекс является тензорным, то есть по нему символы Кристоффеля преобразуются как тензор.

Символы Кристоффеля в различных системах координат

Пользуясь выражением символа через метрический тензор, либо преобразованием координат, можно получить значения их в любой системе координат. В механике и физике чаще всего используются ортогональные криволинейные системы координат. В этом случае символы Кристоффеля с равными коэффициентами выражаются через коэффициенты Ламе (диагональные элементы метрического тензора) , а все остальные равны нулю.

Символы Кристоффеля первого рода выражаются так:

, при .
.

Символы Кристоффеля второго рода:

, при .

Ниже приведены значения для распространённых систем координат:

  • В декартовой системе координат : , поэтому ковариантная производная совпадает с частной производной.
  • В цилиндрической системе координат : , . Остальные равны нулю.
  • В сферической системе координат : , , , , . Остальные равны нулю.

См. также

Литература

  • Димитриенко Ю.И. Тензорное исчисление. — М.: Высшая школа, 2001. — 575 с. — ISBN 5-06-004155-7.
  • Победря Б.Е. Лекции по тензорному анализу. — Издательство Московского университета, 1974. — 206 с.

Ссылки