Парадокс кинетической энергии

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Tpyvvikky (обсуждение | вклад) в 14:16, 26 сентября 2016 (викификация). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Парадокс кинетической энергии — мысленный эксперимент в рамках классической механики. Рассмотрим игрушечный автомобиль с заводной пружиной, которая способна запасать потенциальную энергию . Потерями энергии на трение пренебрежём. Пусть этот запас энергии способен разогнать игрушку до скорости . Перейдём в другую инерциальную систему отсчёта, которая движется относительно Земли навстречу автомобилю со скоростью . С точки зрения этой системы отсчёта, скорость игрушки до разгона равна и кинетическая энергия равна . Скорость игрушки после разгона равна и кинетическая энергия . Таким образом, кинетическая энергия автомобиля возросла на , что превышает запас энергии в пружине .[1]

Объяснение парадокса

Парадокс объясняется тем, что в приведённых рассуждениях не учитывается изменение импульса и кинетической энергии Земли в процессе разгона игрушки. Если учесть изменение импульса и кинетической энергии Земли, то парадокс объясняется. Вращательным движением Земли пока пренебрежём.

Перейдём в систему отсчёта, в которой Земля и игрушка вначале неподвижны. После разгона игрушки, в соответствии с законом сохранения импульса, можно записать уравнение , где  — масса игрушки,  — скорость игрушки,  — масса Земли,  — скорость Земли. В соответствии с законом сохранения энергии можно записать уравнение . Выражая скорость Земли из уравнения и подставляя в уравнение , получим .[1]

Перейдём затем в систему отсчёта, в которой Земля и игрушка вначале движутся со скоростью . После разгона игрушки, в соответствии с законом сохранения импульса, можно записать уравнение , где  — скорость Земли после разгона игрушки. В соответствии с законом сохранения энергии для изменения кинетической энергии можно записать уравнение . Выразим скорость Земли из уравнения и подставим в уравнение . Получим . После простых преобразований получим . То есть и в этом случае изменение кинетической энергии всей системы равно потенциальной энергии пружины .[2]

Изменение кинетической энергии игрушки в новой системе отсчёта в три раза больше, чем в системе отсчёта, связанной с Землёй за счёт того, что оно происходит не только за счёт потенциальной энергии пружины, но и за счёт того, что колёса игрушки в новой системе отсчёта тормозят Землю.[2]

Учтём теперь вызываемое игрушкой вращение Земли. В правой части формулы появится и кинетическая энергия вращения Земли. Она будет того же порядка, что и кинетическая энергия поступательного движения Земли, поэтому в системе отсчёта, где Земля была неподвижной, ею, как и энергией поступательного движения Земли, можно пренебречь и считать, что вся потенциальная энергия пружины превращается в кинетическую энергию игрушки. В системе отсчёта, где скорости игрушки и Земли в начале равны , кинетическая энергия вращения Земли будет такой же, как и в первой системе отсчёта, поскольку изменение угловой скорости Земли одинаково во всех инерциальных системах отсчёта. Поэтому энергией вращения можно пренебречь и во второй системе отсчёта.[3]

Литература

  • Е.И. Бутиков, А.А. Быков, А.С. Кондратьев. Физика в примерах и задачах. — М.: Наука, 1989. — 464 с. — ISBN 5-02-014057-0.

Примечания

  1. 1 2 Бутиков, 1989, с. 73.
  2. 1 2 Бутиков, 1989, с. 74.
  3. Бутиков, 1989, с. 75.