Отрицательное биномиальное распределение

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Версия для печати больше не поддерживается и может содержать ошибки обработки. Обновите закладки браузера и используйте вместо этого функцию печати браузера по умолчанию.
Отрицательное биномиальное распределение
Функция вероятности
Обозначение
Параметры

Носитель
Функция вероятности
Функция распределения
Математическое ожидание
Мода если
если
Дисперсия
Коэффициент асимметрии
Коэффициент эксцесса
Производящая функция моментов
Характеристическая функция

Отрица́тельное биномиа́льное распределе́ние, также называемое распределением Паскаля — это распределение дискретной случайной величины, равной числу произошедших неудач в последовательности испытаний Бернулли с вероятностью успеха , проводимых до -го успеха.

Определение

Пусть  — последовательность независимых случайных величин с распределением Бернулли, то есть

Построим случайную величину следующим образом. Пусть  — номер -го успеха в этой последовательности. Тогда . Более строго, положим . Тогда

.

Распределение случайной величины , определённой таким образом, называется отрицательным биномиальным. Пишут: .

Функции вероятности и распределения

Функция вероятности случайной величины имеет вид:

.

Функция распределения кусочно-постоянна, и её значения в целых точках может быть выражено через неполную бета-функцию:

.

Моменты

Производящая функция моментов отрицательного биномиального распределения имеет вид:

,

откуда

Свойства

Пусть , тогда

Частные случаи отрицательного биномиального распределения

Примечания

  1. 1 2 Schopper H. (Ed.) Electron - Positron Interactions. Berlin, Heidelberg: Springer-Verlag. 1992. P. 133// https://www.twirpx.org/file/3458790/ Архивная копия от 10 мая 2021 на Wayback Machine