Радикал идеала
В коммутативной алгебре радикал идеала I — это идеал, образованный всеми элементами x такими, что некоторая степень x принадлежит I. Радикальный идеал — это идеал, совпадающий со своим собственным радикалом.
Определение
Радикал идеала I в коммутативном кольце R, обозначаемый , определяется как
Интуитивно, для получения радикала идеала нужно взять корни всех возможных степеней из его элементов. Эквивалентное определение радикала идеала I — это прообраз нильрадикала при отображении факторизации. Это также доказывает, что является идеалом.
Примеры
- В кольце целых чисел радикал главного идеала — это идеал, порождённый произведением всех простых делителей .
- Радикал примарного идеала прост. Если радикал идеала максимален, то этот идеал примарен (если же радикал прост, то идеал не обязательно примарен).
- В любом коммутативном кольце для простого идеала [1]. В частности, каждый простой идеал радикален.
Свойства
- . Более того, — это наименьший радикальный идеал, содержащий I.
- — это пересечение всех простых идеалов, содержащих I. В частности, нильрадикал — это пересечение всех простых идеалов.
- Идеал является радикальным тогда и только тогда, когда факторкольцо по нему не содержит нетривиальных нильпотентов.
Приложения
Основная мотивация для изучения радикалов — это их появление в знаменитой теореме Гильберта о нулях из коммутативной алгебры. Наиболее простая формулировка этой теоремы имеет следующий вид: для любого алгебраически замкнутого поля и любого конечнопорождённого идеала в кольце многочленов от переменных над полем верно следующее равенство:
где
и
Примечания
- ↑ Атья и Макдональд, 2003, Предложение 4.2.
Литература
- Атья М., Макдональд И. . Введение в коммутативную алгебру. — М.: Факториал Пресс, 2003. — ISBN 5-88688-067-4.
- Eisenbud, David. . Commutative Algebra with a View Toward Algebraic Geometry. — Springer-Verlag, 1995. — (Graduate Texts in Mathematics, vol. 150). — ISBN 0-387-94268-8.