Ортант
Так же существует метод который называется "Универсальный метод нумерации ортантов в n-мерных и бесконечномерных системах координат", который позволяет нумеровать ортанты в координатных системах большей размерности. Ссылка на статью: https://na-journal.ru/10-2023-informacionnye-tekhnologii/6634-universalnyi-metod-numeracii-ortantov-v-n-mernyh-i-beskonechnomernyh-sistemah-koordinat
Ортант (гипероктант[1]) — обобщение понятий двумерного квадранта и трёхмерного октанта для n-мерного евклидова пространства.
Ортант в n-мерном пространстве можно рассматривать как пересечение n взаимно перпендикулярных полупространств; всего в n-мерном пространстве имеется ортантов.
Замкнутый ортант в есть подмножество, ограничивающее каждую прямоугольную систему координат до неотрицательного или неположительного сектора. Такое подмножество задается системой неравенств:
- ,
где каждое — −1 или +1.
Аналогично, открытый ортант в — подмножество, заданное системой строгих неравенств:
- .
Примечания
[править | править код]- ↑ Weisstein, Eric W. Hyperoctant (англ.) на сайте Wolfram MathWorld.
Для улучшения этой статьи по математике желательно:
|