Журнал фильтра правок

Фильтры правок (обсуждение) — это автоматизированный механизм проверок правок участников.
(Список | Последние изменения фильтров | Изучение правок | Журнал срабатываний)
Перейти к навигации Перейти к поиску
Подробности записи журнала 2735917

22:50, 10 марта 2019: 99 «Кусок текста» Виктория Караева (обсуждение | вклад) на странице F-тест, меры: нет (просмотреть | изм.)

Изменения, сделанные в правке



Более удобный способ проверки гипотез — с помощью [[p-значение|p-значения]] <math>p(F)</math> — вероятностью того, что случайная величина с данным распределением Фишера превысит данное значение статистики. Если <math>p(F)</math> (для двустороннего теста — <math>2p(F</math>)) меньше уровня значимости <math>\alpha</math>, то нулевая гипотеза отвергается, в противном случае принимается.
Более удобный способ проверки гипотез — с помощью [[p-значение|p-значения]] <math>p(F)</math> — вероятностью того, что случайная величина с данным распределением Фишера превысит данное значение статистики. Если <math>p(F)</math> (для двустороннего теста — <math>2p(F</math>)) меньше уровня значимости <math>\alpha</math>, то нулевая гипотеза отвергается, в противном случае принимается.

== Расчет критерия φ* ==
1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого "есть эффект" и тех, у кого "нет эффекта". Если признак измерен количественно, использовать критерий λ для поиска опти­мальной точки разделения.

2. Начертить четырёхклеточную (синоним: четырёхпольная) таблицу из двух столбцов и двух строк. Пер­вый столбец - "есть эффект"; второй столбец - "нет эффекта"; первая стро­ка сверху - 1 группа (выборка); вторая строка - 2 группа (выборка).

3. Подсчитать количество испытуемых в первой группе, у которых "есть эф­фект", и занести это число в левую верхнюю ячейку таблицы.

4. Подсчитать количество испытуемых в первой выборке, у которых "нет эф­фекта", и занести это число в правую верхнюю ячейку таблицы. Подсчитать сумму по двум верхним ячейкам. Она должна совпадать с количеством ис­пытуемых в первой группе.

5. Подсчитать количество испытуемых во второй группе, у которых "есть эф­фект", и занести это число в левую нижнюю ячейку таблицы.

6. Подсчитать количество испытуемых во второй выборке, у которых "нет эф­фекта", и занести это число в правую нижнюю ячейку таблицы. Подсчитать сумму по двум нижним ячейкам. Она должна совпадать с количеством ис­пытуемых во второй группе (выборке).

7. Определить процентные доли испытуемых, у которых "есть эффект", путем отнесения их количества к общему количеству испытуемых в данной группе (выборке). Записать полученные процентные доли соответственно в левой верхней и левой нижней ячейках таблицы в скобках, чтобы не перепутать их с абсолютными значениями.

8. Проверить, не равняется ли одна из сопоставляемых процентных долей ну­лю. Если это так, попробовать изменить это, сдвинув точку разделения групп в ту или иную сторону. Если это невозможно или нежелательно, от­казаться от критерия φ* и использовать критерий χ2.

9. Определить по Табл. XII Приложения 1 величины углов φ для каждой из сопоставляемых процентных долей.

10. Подсчитать эмпирическое значение φ* по формуле:

где: φ1 - угол, соответствующий большей процентной доле;

φ2 - угол, соответствующий меньшей процентной доле;

n1 - количество наблюдений в выборке 1;

n2 - количество наблюдений в выборке 2.

11. Сопоставить полученное значение φ* с критическими значениями: φ* ≤1,64 (р<0,05) и φ* ≤2,31 (р<0,01).

Если φ*эмп ≤φ*кр. H0 отвергается.


== Примеры F-тестов ==
== Примеры F-тестов ==

Параметры действия

ПеременнаяЗначение
Число правок участника (user_editcount)
1
Имя учётной записи (user_name)
'Виктория Караева'
Возраст учётной записи (user_age)
8387781
Группы (включая неявные) в которых состоит участник (user_groups)
[ 0 => '*', 1 => 'user' ]
Редактирует ли пользователь через мобильное приложение (user_app)
false
Редактирует ли участник через мобильный интерфейс (user_mobile)
false
ID страницы (page_id)
802494
Пространство имён страницы (page_namespace)
0
Название страницы (без пространства имён) (page_title)
'F-тест'
Полное название страницы (page_prefixedtitle)
'F-тест'
Последние десять редакторов страницы (page_recent_contributors)
[ 0 => 'Texvc2LaTeXBot', 1 => 'PureVirtual', 2 => 'Niklem', 3 => '178.150.123.245', 4 => 'KrBot', 5 => '91.246.103.42', 6 => '109.232.108.178', 7 => 'V danek', 8 => '89.189.120.246', 9 => 'Игорь Темиров' ]
Возраст страницы (в секундах) (page_age)
361976394
Действие (action)
'edit'
Описание правки/причина (summary)
'дополнение'
Старая модель содержимого (old_content_model)
'wikitext'
Новая модель содержимого (new_content_model)
'wikitext'
Вики-текст старой страницы до правки (old_wikitext)
''''F-тест''' или '''критерий Фишера''' (F-критерий, φ*-критерий) — [[статистический критерий]], тестовая статистика которого при выполнении [[Нулевая гипотеза|нулевой гипотезы]] имеет [[распределение Фишера]] (F-распределение). Статистика теста так или иначе сводится к отношению выборочных дисперсий (сумм квадратов, деленных на «степени свободы»). Чтобы статистика имела распределение Фишера, необходимо, чтобы числитель и знаменатель были независимыми случайными величинами и соответствующие суммы квадратов имели распределение [[Хи-квадрат]]. Для этого требуется, чтобы данные имели нормальное распределение. Кроме того, предполагается, что дисперсия случайных величин, квадраты которых суммируются, одинакова. Тест проводится путём сравнения значения статистики с критическим значением соответствующего распределения Фишера при заданном уровне значимости. Известно, что если <math>F \sim F(m,n)</math>, то <math>1/F \sim F(n,m)</math>. Кроме того, квантили распределения Фишера обладают свойством <math>F_{1-\alpha}=1/F_{\alpha}</math>. Поэтому обычно на практике в числителе участвует потенциально большая величина, в знаменателе — меньшая и сравнение осуществляется с «правой» квантилью распределения. Тем не менее тест может быть и двусторонним, и односторонним. В первом случае при уровне значимости <math>\alpha</math> используется квантиль <math>F_{\alpha/2}</math>, а при одностороннем тесте — <math>F_{\alpha}</math><ref>{{cw|url=http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm|title=F-Test for Equality of Two Variances|publisher=[[NIST]]|lang=en|accessdate=2017-03-29}}</ref>. Более удобный способ проверки гипотез — с помощью [[p-значение|p-значения]] <math>p(F)</math> — вероятностью того, что случайная величина с данным распределением Фишера превысит данное значение статистики. Если <math>p(F)</math> (для двустороннего теста — <math>2p(F</math>)) меньше уровня значимости <math>\alpha</math>, то нулевая гипотеза отвергается, в противном случае принимается. == Примеры F-тестов == === F-тест на равенство дисперсий === ==== Две выборки ==== Пусть имеются две выборки объёмом m и n соответственно случайных величин X и Y, имеющих нормальное распределение. Необходимо проверить равенство их дисперсий. Статистика теста <math>F=\frac {\hat{\sigma}^2_X}{\hat{\sigma}^2_Y}~ \sim ~F(m-1,n-1)</math> где <math>{\hat{\sigma}^2}</math> — [[выборочная дисперсия]]. Если статистика больше критического значения, соответствующего выбранному уровню [[Статистическая значимость|значимости]], то дисперсии случайных величин признаются не одинаковыми. ==== Несколько выборок ==== Пусть выборка объёмом ''N'' случайной величины ''X'' разделена на ''k'' групп с количеством наблюдений <math>n_i</math> в ''i''-ой группе. Межгрупповая («объяснённая») дисперсия: <math>\hat{\sigma}^2_{BG}=\sum^k_{i=1} n_i (\overline {x_i}-\overline {x})^2/(k-1)</math> Внутригрупповая («необъяснённая») дисперсия: <math>\hat{\sigma}^2_{WG}=\sum^k_{i=1}\sum^{n_i}_{j=1} (x_{ij}-\overline {x}_i)^2/(N-k)</math> <math>F=\frac {\hat{\sigma}^2_{BG}}{\hat{\sigma}^2_{WG}}~\sim~F(k-1,N-k)</math> Данный тест можно свести к тестированию значимости регрессии переменной X на [[фиктивная переменная|фиктивные переменные]]-индикаторы групп. Если статистика превышает критическое значение, то гипотеза о равенстве средних в выборках отвергается, в противном случае средние можно считать одинаковыми. === Проверка ограничений на параметры регрессии === Статистика теста для проверки линейных ограничений на параметры классической нормальной линейной регрессии определяется по формуле: <math>F=\frac {(ESS_S-ESS_L)/q}{ESS_L/(n-k_L)}=\frac {(R^2_L-R^2_S)/q}{(1-R^2_L)/(n-k_L)}~\sim ~F(q,n-k_L)</math> где <math>q=k_L-k_S</math> -количество ограничений, n-объём выборки, k-количество параметров модели, ESS-сумма квадратов остатков модели, <math>R^2</math>-коэффициент детерминации, индексы S и L относятся соответственно к короткой и длинной модели (модели с ограничениями и модели без ограничений). ==== Замечание ==== Описанный выше F-тест является ''точным'' в случае нормального распределения случайных ошибок модели. Однако F-тест можно применить и в более общем случае. В этом случае он является асимптотическим. Соответствующую F-статистику можно рассчитать на основе статистик других асимптотических тестов — [[тест Вальда|теста Вальда]] (W), [[тест множителей Лагранжа|теста множителей Лагранжа]](LM) и [[тест отношения правдоподобия|теста отношения правдоподобия]] (LR) — следующим образом: <math>F=\frac {n-k}{q} W/n ~,~ F=\frac {n-k}{q} \frac {LM} {n-LM} ~,~F=\frac {n-k}{q}(e^{LR/n}-1)</math> Все эти статистики асимптотически имеют распределение F(q, n-k), несмотря на то, что их значения на малых выборках могут различаться. === Проверка значимости линейной регрессии === Данный тест очень важен в регрессионном анализе и по существу является частным случаем проверки ограничений. В данном случае нулевая гипотеза — об одновременном равенстве нулю всех коэффициентов при факторах регрессионной модели (то есть всего ограничений k-1). В данном случае короткая модель — это просто константа в качестве фактора, то есть коэффициент детерминации короткой модели равен нулю. Статистика теста равна: <math>F=\frac {R^2/(k-1)}{(1-R^2)/(n-k)}~\sim ~F(k-1,n-k)</math> Соответственно, если значение этой статистики больше критического значения при данном уровне значимости, то нулевая гипотеза отвергается, что означает статистическую значимость регрессии. В противном случае модель признается незначимой. ==== Пример ==== Пусть оценивается линейная регрессия доли расходов на питание в общей сумме расходов на константу, логарифм совокупных расходов, количество взрослых членов семьи и количество детей до 11 лет. То есть всего в модели 4 оцениваемых параметра (k=4). Пусть по результатам оценки регрессии получен коэффициент детерминации <math>R^2=41.2366\%</math>. По вышеприведенной формуле рассчитаем значение F-статистики в случае, если регрессия оценена по данным 34 наблюдений и по данным 64 наблюдений: <math>F_1=\frac {0.412366/(4-1)}{(1-0.412366)/(34-4)}=0,70174*10=7,02</math> <math>F_2=\frac {0.412366/(4-1)}{(1-0.412366)/(64-4)}=0,70174*20=14.04</math> Критическое значение статистики при 1 % уровне значимости (в Excel функция FРАСПОБР) в первом случае равно <math>F_{1\%}(3,30)=4,51</math>, а во втором случае <math>F_{1\%}(3,60)=4,13</math>. В обоих случаях регрессия признается значимой при заданном уровне значимости. В первом случае P-значение равно 0,1 %, а во втором — 0,00005 %. Таким образом, во втором случае уверенность в значимости регрессии существенно выше (существенно меньше вероятность ошибки в случае признания модели значимой). === Проверка гетероскедастичности === См. [[Тест Голдфелда-Куандта]] == См. также == * [[Проверка статистических гипотез]] * [[Статистический критерий]] * [[Тест Вальда]] * [[Тест отношения правдоподобия]] * [[Тест множителей Лагранжа]] * [[Тест Голдфелда-Куандта]] == Примечания == {{Примечания}} [[Категория:Статистические критерии]] [[Категория:Дисперсионный анализ]]'
Вики-текст новой страницы после правки (new_wikitext)
''''F-тест''' или '''критерий Фишера''' (F-критерий, φ*-критерий) — [[статистический критерий]], тестовая статистика которого при выполнении [[Нулевая гипотеза|нулевой гипотезы]] имеет [[распределение Фишера]] (F-распределение). Статистика теста так или иначе сводится к отношению выборочных дисперсий (сумм квадратов, деленных на «степени свободы»). Чтобы статистика имела распределение Фишера, необходимо, чтобы числитель и знаменатель были независимыми случайными величинами и соответствующие суммы квадратов имели распределение [[Хи-квадрат]]. Для этого требуется, чтобы данные имели нормальное распределение. Кроме того, предполагается, что дисперсия случайных величин, квадраты которых суммируются, одинакова. Тест проводится путём сравнения значения статистики с критическим значением соответствующего распределения Фишера при заданном уровне значимости. Известно, что если <math>F \sim F(m,n)</math>, то <math>1/F \sim F(n,m)</math>. Кроме того, квантили распределения Фишера обладают свойством <math>F_{1-\alpha}=1/F_{\alpha}</math>. Поэтому обычно на практике в числителе участвует потенциально большая величина, в знаменателе — меньшая и сравнение осуществляется с «правой» квантилью распределения. Тем не менее тест может быть и двусторонним, и односторонним. В первом случае при уровне значимости <math>\alpha</math> используется квантиль <math>F_{\alpha/2}</math>, а при одностороннем тесте — <math>F_{\alpha}</math><ref>{{cw|url=http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm|title=F-Test for Equality of Two Variances|publisher=[[NIST]]|lang=en|accessdate=2017-03-29}}</ref>. Более удобный способ проверки гипотез — с помощью [[p-значение|p-значения]] <math>p(F)</math> — вероятностью того, что случайная величина с данным распределением Фишера превысит данное значение статистики. Если <math>p(F)</math> (для двустороннего теста — <math>2p(F</math>)) меньше уровня значимости <math>\alpha</math>, то нулевая гипотеза отвергается, в противном случае принимается. == Расчет критерия φ* == 1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого "есть эффект" и тех, у кого "нет эффекта". Если признак измерен количественно, использовать критерий λ для поиска опти­мальной точки разделения. 2. Начертить четырёхклеточную (синоним: четырёхпольная) таблицу из двух столбцов и двух строк. Пер­вый столбец - "есть эффект"; второй столбец - "нет эффекта"; первая стро­ка сверху - 1 группа (выборка); вторая строка - 2 группа (выборка). 3. Подсчитать количество испытуемых в первой группе, у которых "есть эф­фект", и занести это число в левую верхнюю ячейку таблицы. 4. Подсчитать количество испытуемых в первой выборке, у которых "нет эф­фекта", и занести это число в правую верхнюю ячейку таблицы. Подсчитать сумму по двум верхним ячейкам. Она должна совпадать с количеством ис­пытуемых в первой группе. 5. Подсчитать количество испытуемых во второй группе, у которых "есть эф­фект", и занести это число в левую нижнюю ячейку таблицы. 6. Подсчитать количество испытуемых во второй выборке, у которых "нет эф­фекта", и занести это число в правую нижнюю ячейку таблицы. Подсчитать сумму по двум нижним ячейкам. Она должна совпадать с количеством ис­пытуемых во второй группе (выборке). 7. Определить процентные доли испытуемых, у которых "есть эффект", путем отнесения их количества к общему количеству испытуемых в данной группе (выборке). Записать полученные процентные доли соответственно в левой верхней и левой нижней ячейках таблицы в скобках, чтобы не перепутать их с абсолютными значениями. 8. Проверить, не равняется ли одна из сопоставляемых процентных долей ну­лю. Если это так, попробовать изменить это, сдвинув точку разделения групп в ту или иную сторону. Если это невозможно или нежелательно, от­казаться от критерия φ* и использовать критерий χ2. 9. Определить по Табл. XII Приложения 1 величины углов φ для каждой из сопоставляемых процентных долей. 10. Подсчитать эмпирическое значение φ* по формуле: где: φ1 - угол, соответствующий большей процентной доле; φ2 - угол, соответствующий меньшей процентной доле; n1 - количество наблюдений в выборке 1; n2 - количество наблюдений в выборке 2. 11. Сопоставить полученное значение φ* с критическими значениями: φ* ≤1,64 (р<0,05) и φ* ≤2,31 (р<0,01). Если φ*эмп ≤φ*кр. H0 отвергается. == Примеры F-тестов == === F-тест на равенство дисперсий === ==== Две выборки ==== Пусть имеются две выборки объёмом m и n соответственно случайных величин X и Y, имеющих нормальное распределение. Необходимо проверить равенство их дисперсий. Статистика теста <math>F=\frac {\hat{\sigma}^2_X}{\hat{\sigma}^2_Y}~ \sim ~F(m-1,n-1)</math> где <math>{\hat{\sigma}^2}</math> — [[выборочная дисперсия]]. Если статистика больше критического значения, соответствующего выбранному уровню [[Статистическая значимость|значимости]], то дисперсии случайных величин признаются не одинаковыми. ==== Несколько выборок ==== Пусть выборка объёмом ''N'' случайной величины ''X'' разделена на ''k'' групп с количеством наблюдений <math>n_i</math> в ''i''-ой группе. Межгрупповая («объяснённая») дисперсия: <math>\hat{\sigma}^2_{BG}=\sum^k_{i=1} n_i (\overline {x_i}-\overline {x})^2/(k-1)</math> Внутригрупповая («необъяснённая») дисперсия: <math>\hat{\sigma}^2_{WG}=\sum^k_{i=1}\sum^{n_i}_{j=1} (x_{ij}-\overline {x}_i)^2/(N-k)</math> <math>F=\frac {\hat{\sigma}^2_{BG}}{\hat{\sigma}^2_{WG}}~\sim~F(k-1,N-k)</math> Данный тест можно свести к тестированию значимости регрессии переменной X на [[фиктивная переменная|фиктивные переменные]]-индикаторы групп. Если статистика превышает критическое значение, то гипотеза о равенстве средних в выборках отвергается, в противном случае средние можно считать одинаковыми. === Проверка ограничений на параметры регрессии === Статистика теста для проверки линейных ограничений на параметры классической нормальной линейной регрессии определяется по формуле: <math>F=\frac {(ESS_S-ESS_L)/q}{ESS_L/(n-k_L)}=\frac {(R^2_L-R^2_S)/q}{(1-R^2_L)/(n-k_L)}~\sim ~F(q,n-k_L)</math> где <math>q=k_L-k_S</math> -количество ограничений, n-объём выборки, k-количество параметров модели, ESS-сумма квадратов остатков модели, <math>R^2</math>-коэффициент детерминации, индексы S и L относятся соответственно к короткой и длинной модели (модели с ограничениями и модели без ограничений). ==== Замечание ==== Описанный выше F-тест является ''точным'' в случае нормального распределения случайных ошибок модели. Однако F-тест можно применить и в более общем случае. В этом случае он является асимптотическим. Соответствующую F-статистику можно рассчитать на основе статистик других асимптотических тестов — [[тест Вальда|теста Вальда]] (W), [[тест множителей Лагранжа|теста множителей Лагранжа]](LM) и [[тест отношения правдоподобия|теста отношения правдоподобия]] (LR) — следующим образом: <math>F=\frac {n-k}{q} W/n ~,~ F=\frac {n-k}{q} \frac {LM} {n-LM} ~,~F=\frac {n-k}{q}(e^{LR/n}-1)</math> Все эти статистики асимптотически имеют распределение F(q, n-k), несмотря на то, что их значения на малых выборках могут различаться. === Проверка значимости линейной регрессии === Данный тест очень важен в регрессионном анализе и по существу является частным случаем проверки ограничений. В данном случае нулевая гипотеза — об одновременном равенстве нулю всех коэффициентов при факторах регрессионной модели (то есть всего ограничений k-1). В данном случае короткая модель — это просто константа в качестве фактора, то есть коэффициент детерминации короткой модели равен нулю. Статистика теста равна: <math>F=\frac {R^2/(k-1)}{(1-R^2)/(n-k)}~\sim ~F(k-1,n-k)</math> Соответственно, если значение этой статистики больше критического значения при данном уровне значимости, то нулевая гипотеза отвергается, что означает статистическую значимость регрессии. В противном случае модель признается незначимой. ==== Пример ==== Пусть оценивается линейная регрессия доли расходов на питание в общей сумме расходов на константу, логарифм совокупных расходов, количество взрослых членов семьи и количество детей до 11 лет. То есть всего в модели 4 оцениваемых параметра (k=4). Пусть по результатам оценки регрессии получен коэффициент детерминации <math>R^2=41.2366\%</math>. По вышеприведенной формуле рассчитаем значение F-статистики в случае, если регрессия оценена по данным 34 наблюдений и по данным 64 наблюдений: <math>F_1=\frac {0.412366/(4-1)}{(1-0.412366)/(34-4)}=0,70174*10=7,02</math> <math>F_2=\frac {0.412366/(4-1)}{(1-0.412366)/(64-4)}=0,70174*20=14.04</math> Критическое значение статистики при 1 % уровне значимости (в Excel функция FРАСПОБР) в первом случае равно <math>F_{1\%}(3,30)=4,51</math>, а во втором случае <math>F_{1\%}(3,60)=4,13</math>. В обоих случаях регрессия признается значимой при заданном уровне значимости. В первом случае P-значение равно 0,1 %, а во втором — 0,00005 %. Таким образом, во втором случае уверенность в значимости регрессии существенно выше (существенно меньше вероятность ошибки в случае признания модели значимой). === Проверка гетероскедастичности === См. [[Тест Голдфелда-Куандта]] == См. также == * [[Проверка статистических гипотез]] * [[Статистический критерий]] * [[Тест Вальда]] * [[Тест отношения правдоподобия]] * [[Тест множителей Лагранжа]] * [[Тест Голдфелда-Куандта]] == Примечания == {{Примечания}} [[Категория:Статистические критерии]] [[Категория:Дисперсионный анализ]]'
Унифицированная разница изменений правки (edit_diff)
'@@ -6,4 +6,37 @@ Более удобный способ проверки гипотез — с помощью [[p-значение|p-значения]] <math>p(F)</math> — вероятностью того, что случайная величина с данным распределением Фишера превысит данное значение статистики. Если <math>p(F)</math> (для двустороннего теста — <math>2p(F</math>)) меньше уровня значимости <math>\alpha</math>, то нулевая гипотеза отвергается, в противном случае принимается. + +== Расчет критерия φ* == +1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого "есть эффект" и тех, у кого "нет эффекта". Если признак измерен количественно, использовать критерий λ для поиска опти­мальной точки разделения. + +2. Начертить четырёхклеточную (синоним: четырёхпольная) таблицу из двух столбцов и двух строк. Пер­вый столбец - "есть эффект"; второй столбец - "нет эффекта"; первая стро­ка сверху - 1 группа (выборка); вторая строка - 2 группа (выборка). + +3. Подсчитать количество испытуемых в первой группе, у которых "есть эф­фект", и занести это число в левую верхнюю ячейку таблицы. + +4. Подсчитать количество испытуемых в первой выборке, у которых "нет эф­фекта", и занести это число в правую верхнюю ячейку таблицы. Подсчитать сумму по двум верхним ячейкам. Она должна совпадать с количеством ис­пытуемых в первой группе. + +5. Подсчитать количество испытуемых во второй группе, у которых "есть эф­фект", и занести это число в левую нижнюю ячейку таблицы. + +6. Подсчитать количество испытуемых во второй выборке, у которых "нет эф­фекта", и занести это число в правую нижнюю ячейку таблицы. Подсчитать сумму по двум нижним ячейкам. Она должна совпадать с количеством ис­пытуемых во второй группе (выборке). + +7. Определить процентные доли испытуемых, у которых "есть эффект", путем отнесения их количества к общему количеству испытуемых в данной группе (выборке). Записать полученные процентные доли соответственно в левой верхней и левой нижней ячейках таблицы в скобках, чтобы не перепутать их с абсолютными значениями. + +8. Проверить, не равняется ли одна из сопоставляемых процентных долей ну­лю. Если это так, попробовать изменить это, сдвинув точку разделения групп в ту или иную сторону. Если это невозможно или нежелательно, от­казаться от критерия φ* и использовать критерий χ2. + +9. Определить по Табл. XII Приложения 1 величины углов φ для каждой из сопоставляемых процентных долей. + +10. Подсчитать эмпирическое значение φ* по формуле: + +где: φ1 - угол, соответствующий большей процентной доле; + +φ2 - угол, соответствующий меньшей процентной доле; + +n1 - количество наблюдений в выборке 1; + +n2 - количество наблюдений в выборке 2. + +11. Сопоставить полученное значение φ* с критическими значениями: φ* ≤1,64 (р<0,05) и φ* ≤2,31 (р<0,01). + +Если φ*эмп ≤φ*кр. H0 отвергается. == Примеры F-тестов == '
Новый размер страницы (new_size)
15776
Старый размер страницы (old_size)
11618
Изменение размера в правке (edit_delta)
4158
Добавленные в правке строки (added_lines)
[ 0 => false, 1 => '== Расчет критерия φ* ==', 2 => '1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого "есть эффект" и тех, у кого "нет эффекта". Если признак измерен количественно, использовать критерий λ для поиска опти­мальной точки разделения.', 3 => false, 4 => '2. Начертить четырёхклеточную (синоним: четырёхпольная) таблицу из двух столбцов и двух строк. Пер­вый столбец - "есть эффект"; второй столбец - "нет эффекта"; первая стро­ка сверху - 1 группа (выборка); вторая строка - 2 группа (выборка).', 5 => false, 6 => '3. Подсчитать количество испытуемых в первой группе, у которых "есть эф­фект", и занести это число в левую верхнюю ячейку таблицы.', 7 => false, 8 => '4. Подсчитать количество испытуемых в первой выборке, у которых "нет эф­фекта", и занести это число в правую верхнюю ячейку таблицы. Подсчитать сумму по двум верхним ячейкам. Она должна совпадать с количеством ис­пытуемых в первой группе.', 9 => false, 10 => '5. Подсчитать количество испытуемых во второй группе, у которых "есть эф­фект", и занести это число в левую нижнюю ячейку таблицы.', 11 => false, 12 => '6. Подсчитать количество испытуемых во второй выборке, у которых "нет эф­фекта", и занести это число в правую нижнюю ячейку таблицы. Подсчитать сумму по двум нижним ячейкам. Она должна совпадать с количеством ис­пытуемых во второй группе (выборке).', 13 => false, 14 => '7. Определить процентные доли испытуемых, у которых "есть эффект", путем отнесения их количества к общему количеству испытуемых в данной группе (выборке). Записать полученные процентные доли соответственно в левой верхней и левой нижней ячейках таблицы в скобках, чтобы не перепутать их с абсолютными значениями.', 15 => false, 16 => '8. Проверить, не равняется ли одна из сопоставляемых процентных долей ну­лю. Если это так, попробовать изменить это, сдвинув точку разделения групп в ту или иную сторону. Если это невозможно или нежелательно, от­казаться от критерия φ* и использовать критерий χ2.', 17 => false, 18 => '9. Определить по Табл. XII Приложения 1 величины углов φ для каждой из сопоставляемых процентных долей.', 19 => false, 20 => '10. Подсчитать эмпирическое значение φ* по формуле:', 21 => false, 22 => 'где: φ1 - угол, соответствующий большей процентной доле;', 23 => false, 24 => 'φ2 - угол, соответствующий меньшей процентной доле;', 25 => false, 26 => 'n1 - количество наблюдений в выборке 1;', 27 => false, 28 => 'n2 - количество наблюдений в выборке 2.', 29 => false, 30 => '11. Сопоставить полученное значение φ* с критическими значениями: φ* ≤1,64 (р<0,05) и φ* ≤2,31 (р<0,01).', 31 => false, 32 => 'Если φ*эмп ≤φ*кр. H0 отвергается.' ]
Удалённые в правке строки (removed_lines)
[]
Была ли правка сделана через выходной узел сети Tor (tor_exit_node)
false
Unix-время изменения (timestamp)
1552258249