Число правок участника (user_editcount ) | 1 |
Имя учётной записи (user_name ) | 'Виктория Караева' |
Возраст учётной записи (user_age ) | 8387781 |
Группы (включая неявные) в которых состоит участник (user_groups ) | [
0 => '*',
1 => 'user'
] |
Редактирует ли пользователь через мобильное приложение (user_app ) | false |
Редактирует ли участник через мобильный интерфейс (user_mobile ) | false |
ID страницы (page_id ) | 802494 |
Пространство имён страницы (page_namespace ) | 0 |
Название страницы (без пространства имён) (page_title ) | 'F-тест' |
Полное название страницы (page_prefixedtitle ) | 'F-тест' |
Последние десять редакторов страницы (page_recent_contributors ) | [
0 => 'Texvc2LaTeXBot',
1 => 'PureVirtual',
2 => 'Niklem',
3 => '178.150.123.245',
4 => 'KrBot',
5 => '91.246.103.42',
6 => '109.232.108.178',
7 => 'V danek',
8 => '89.189.120.246',
9 => 'Игорь Темиров'
] |
Возраст страницы (в секундах) (page_age ) | 361976394 |
Действие (action ) | 'edit' |
Описание правки/причина (summary ) | 'дополнение' |
Старая модель содержимого (old_content_model ) | 'wikitext' |
Новая модель содержимого (new_content_model ) | 'wikitext' |
Вики-текст старой страницы до правки (old_wikitext ) | ''''F-тест''' или '''критерий Фишера''' (F-критерий, φ*-критерий) — [[статистический критерий]], тестовая статистика которого при выполнении [[Нулевая гипотеза|нулевой гипотезы]] имеет [[распределение Фишера]] (F-распределение).
Статистика теста так или иначе сводится к отношению выборочных дисперсий (сумм квадратов, деленных на «степени свободы»). Чтобы статистика имела распределение Фишера, необходимо, чтобы числитель и знаменатель были независимыми случайными величинами и соответствующие суммы квадратов имели распределение [[Хи-квадрат]]. Для этого требуется, чтобы данные имели нормальное распределение. Кроме того, предполагается, что дисперсия случайных величин, квадраты которых суммируются, одинакова.
Тест проводится путём сравнения значения статистики с критическим значением соответствующего распределения Фишера при заданном уровне значимости. Известно, что если <math>F \sim F(m,n)</math>, то <math>1/F \sim F(n,m)</math>. Кроме того, квантили распределения Фишера обладают свойством <math>F_{1-\alpha}=1/F_{\alpha}</math>. Поэтому обычно на практике в числителе участвует потенциально большая величина, в знаменателе — меньшая и сравнение осуществляется с «правой» квантилью распределения. Тем не менее тест может быть и двусторонним, и односторонним. В первом случае при уровне значимости <math>\alpha</math> используется квантиль <math>F_{\alpha/2}</math>, а при одностороннем тесте — <math>F_{\alpha}</math><ref>{{cw|url=http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm|title=F-Test for Equality of Two Variances|publisher=[[NIST]]|lang=en|accessdate=2017-03-29}}</ref>.
Более удобный способ проверки гипотез — с помощью [[p-значение|p-значения]] <math>p(F)</math> — вероятностью того, что случайная величина с данным распределением Фишера превысит данное значение статистики. Если <math>p(F)</math> (для двустороннего теста — <math>2p(F</math>)) меньше уровня значимости <math>\alpha</math>, то нулевая гипотеза отвергается, в противном случае принимается.
== Примеры F-тестов ==
=== F-тест на равенство дисперсий ===
==== Две выборки ====
Пусть имеются две выборки объёмом m и n соответственно случайных величин X и Y, имеющих нормальное распределение. Необходимо проверить равенство их дисперсий. Статистика теста
<math>F=\frac {\hat{\sigma}^2_X}{\hat{\sigma}^2_Y}~ \sim ~F(m-1,n-1)</math>
где <math>{\hat{\sigma}^2}</math> — [[выборочная дисперсия]].
Если статистика больше критического значения, соответствующего выбранному уровню [[Статистическая значимость|значимости]], то дисперсии случайных величин признаются не одинаковыми.
==== Несколько выборок ====
Пусть выборка объёмом ''N'' случайной величины ''X'' разделена на ''k'' групп с количеством наблюдений <math>n_i</math> в ''i''-ой группе.
Межгрупповая («объяснённая») дисперсия: <math>\hat{\sigma}^2_{BG}=\sum^k_{i=1} n_i (\overline {x_i}-\overline {x})^2/(k-1)</math>
Внутригрупповая («необъяснённая») дисперсия: <math>\hat{\sigma}^2_{WG}=\sum^k_{i=1}\sum^{n_i}_{j=1} (x_{ij}-\overline {x}_i)^2/(N-k)</math>
<math>F=\frac {\hat{\sigma}^2_{BG}}{\hat{\sigma}^2_{WG}}~\sim~F(k-1,N-k)</math>
Данный тест можно свести к тестированию значимости регрессии переменной X на [[фиктивная переменная|фиктивные переменные]]-индикаторы групп. Если статистика превышает критическое значение, то гипотеза о равенстве средних в выборках отвергается, в противном случае средние можно считать одинаковыми.
=== Проверка ограничений на параметры регрессии ===
Статистика теста для проверки линейных ограничений на параметры классической нормальной линейной регрессии определяется по формуле:
<math>F=\frac {(ESS_S-ESS_L)/q}{ESS_L/(n-k_L)}=\frac {(R^2_L-R^2_S)/q}{(1-R^2_L)/(n-k_L)}~\sim ~F(q,n-k_L)</math>
где <math>q=k_L-k_S</math> -количество ограничений, n-объём выборки, k-количество параметров модели, ESS-сумма квадратов остатков модели, <math>R^2</math>-коэффициент детерминации, индексы S и L относятся соответственно к короткой и длинной модели (модели с ограничениями и модели без ограничений).
==== Замечание ====
Описанный выше F-тест является ''точным'' в случае нормального распределения случайных ошибок модели. Однако F-тест можно применить и в более общем случае. В этом случае он является асимптотическим. Соответствующую F-статистику можно рассчитать на основе статистик других асимптотических тестов — [[тест Вальда|теста Вальда]] (W), [[тест множителей Лагранжа|теста множителей Лагранжа]](LM) и [[тест отношения правдоподобия|теста отношения правдоподобия]] (LR) — следующим образом:
<math>F=\frac {n-k}{q} W/n ~,~ F=\frac {n-k}{q} \frac {LM} {n-LM} ~,~F=\frac {n-k}{q}(e^{LR/n}-1)</math>
Все эти статистики асимптотически имеют распределение F(q, n-k), несмотря на то, что их значения на малых выборках могут различаться.
=== Проверка значимости линейной регрессии ===
Данный тест очень важен в регрессионном анализе и по существу является частным случаем проверки ограничений. В данном случае нулевая гипотеза — об одновременном равенстве нулю всех коэффициентов при факторах регрессионной модели (то есть всего ограничений k-1). В данном случае короткая модель — это просто константа в качестве фактора, то есть коэффициент детерминации короткой модели равен нулю. Статистика теста равна:
<math>F=\frac {R^2/(k-1)}{(1-R^2)/(n-k)}~\sim ~F(k-1,n-k)</math>
Соответственно, если значение этой статистики больше критического значения при данном уровне значимости, то нулевая гипотеза отвергается, что означает статистическую значимость регрессии. В противном случае модель признается незначимой.
==== Пример ====
Пусть оценивается линейная регрессия доли расходов на питание в общей сумме расходов на константу, логарифм совокупных расходов, количество взрослых членов семьи и количество детей до 11 лет. То есть всего в модели 4 оцениваемых параметра (k=4). Пусть по результатам оценки регрессии получен коэффициент детерминации <math>R^2=41.2366\%</math>. По вышеприведенной формуле рассчитаем значение F-статистики в случае, если регрессия оценена по данным 34 наблюдений и по данным 64 наблюдений:
<math>F_1=\frac {0.412366/(4-1)}{(1-0.412366)/(34-4)}=0,70174*10=7,02</math>
<math>F_2=\frac {0.412366/(4-1)}{(1-0.412366)/(64-4)}=0,70174*20=14.04</math>
Критическое значение статистики при 1 % уровне значимости (в Excel функция FРАСПОБР) в первом случае равно <math>F_{1\%}(3,30)=4,51</math>, а во втором случае <math>F_{1\%}(3,60)=4,13</math>. В обоих случаях регрессия признается значимой при заданном уровне значимости. В первом случае P-значение равно 0,1 %, а во втором — 0,00005 %. Таким образом, во втором случае уверенность в значимости регрессии существенно выше (существенно меньше вероятность ошибки в случае признания модели значимой).
=== Проверка гетероскедастичности ===
См. [[Тест Голдфелда-Куандта]]
== См. также ==
* [[Проверка статистических гипотез]]
* [[Статистический критерий]]
* [[Тест Вальда]]
* [[Тест отношения правдоподобия]]
* [[Тест множителей Лагранжа]]
* [[Тест Голдфелда-Куандта]]
== Примечания ==
{{Примечания}}
[[Категория:Статистические критерии]]
[[Категория:Дисперсионный анализ]]' |
Вики-текст новой страницы после правки (new_wikitext ) | ''''F-тест''' или '''критерий Фишера''' (F-критерий, φ*-критерий) — [[статистический критерий]], тестовая статистика которого при выполнении [[Нулевая гипотеза|нулевой гипотезы]] имеет [[распределение Фишера]] (F-распределение).
Статистика теста так или иначе сводится к отношению выборочных дисперсий (сумм квадратов, деленных на «степени свободы»). Чтобы статистика имела распределение Фишера, необходимо, чтобы числитель и знаменатель были независимыми случайными величинами и соответствующие суммы квадратов имели распределение [[Хи-квадрат]]. Для этого требуется, чтобы данные имели нормальное распределение. Кроме того, предполагается, что дисперсия случайных величин, квадраты которых суммируются, одинакова.
Тест проводится путём сравнения значения статистики с критическим значением соответствующего распределения Фишера при заданном уровне значимости. Известно, что если <math>F \sim F(m,n)</math>, то <math>1/F \sim F(n,m)</math>. Кроме того, квантили распределения Фишера обладают свойством <math>F_{1-\alpha}=1/F_{\alpha}</math>. Поэтому обычно на практике в числителе участвует потенциально большая величина, в знаменателе — меньшая и сравнение осуществляется с «правой» квантилью распределения. Тем не менее тест может быть и двусторонним, и односторонним. В первом случае при уровне значимости <math>\alpha</math> используется квантиль <math>F_{\alpha/2}</math>, а при одностороннем тесте — <math>F_{\alpha}</math><ref>{{cw|url=http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm|title=F-Test for Equality of Two Variances|publisher=[[NIST]]|lang=en|accessdate=2017-03-29}}</ref>.
Более удобный способ проверки гипотез — с помощью [[p-значение|p-значения]] <math>p(F)</math> — вероятностью того, что случайная величина с данным распределением Фишера превысит данное значение статистики. Если <math>p(F)</math> (для двустороннего теста — <math>2p(F</math>)) меньше уровня значимости <math>\alpha</math>, то нулевая гипотеза отвергается, в противном случае принимается.
== Расчет критерия φ* ==
1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого "есть эффект" и тех, у кого "нет эффекта". Если признак измерен количественно, использовать критерий λ для поиска оптимальной точки разделения.
2. Начертить четырёхклеточную (синоним: четырёхпольная) таблицу из двух столбцов и двух строк. Первый столбец - "есть эффект"; второй столбец - "нет эффекта"; первая строка сверху - 1 группа (выборка); вторая строка - 2 группа (выборка).
3. Подсчитать количество испытуемых в первой группе, у которых "есть эффект", и занести это число в левую верхнюю ячейку таблицы.
4. Подсчитать количество испытуемых в первой выборке, у которых "нет эффекта", и занести это число в правую верхнюю ячейку таблицы. Подсчитать сумму по двум верхним ячейкам. Она должна совпадать с количеством испытуемых в первой группе.
5. Подсчитать количество испытуемых во второй группе, у которых "есть эффект", и занести это число в левую нижнюю ячейку таблицы.
6. Подсчитать количество испытуемых во второй выборке, у которых "нет эффекта", и занести это число в правую нижнюю ячейку таблицы. Подсчитать сумму по двум нижним ячейкам. Она должна совпадать с количеством испытуемых во второй группе (выборке).
7. Определить процентные доли испытуемых, у которых "есть эффект", путем отнесения их количества к общему количеству испытуемых в данной группе (выборке). Записать полученные процентные доли соответственно в левой верхней и левой нижней ячейках таблицы в скобках, чтобы не перепутать их с абсолютными значениями.
8. Проверить, не равняется ли одна из сопоставляемых процентных долей нулю. Если это так, попробовать изменить это, сдвинув точку разделения групп в ту или иную сторону. Если это невозможно или нежелательно, отказаться от критерия φ* и использовать критерий χ2.
9. Определить по Табл. XII Приложения 1 величины углов φ для каждой из сопоставляемых процентных долей.
10. Подсчитать эмпирическое значение φ* по формуле:
где: φ1 - угол, соответствующий большей процентной доле;
φ2 - угол, соответствующий меньшей процентной доле;
n1 - количество наблюдений в выборке 1;
n2 - количество наблюдений в выборке 2.
11. Сопоставить полученное значение φ* с критическими значениями: φ* ≤1,64 (р<0,05) и φ* ≤2,31 (р<0,01).
Если φ*эмп ≤φ*кр. H0 отвергается.
== Примеры F-тестов ==
=== F-тест на равенство дисперсий ===
==== Две выборки ====
Пусть имеются две выборки объёмом m и n соответственно случайных величин X и Y, имеющих нормальное распределение. Необходимо проверить равенство их дисперсий. Статистика теста
<math>F=\frac {\hat{\sigma}^2_X}{\hat{\sigma}^2_Y}~ \sim ~F(m-1,n-1)</math>
где <math>{\hat{\sigma}^2}</math> — [[выборочная дисперсия]].
Если статистика больше критического значения, соответствующего выбранному уровню [[Статистическая значимость|значимости]], то дисперсии случайных величин признаются не одинаковыми.
==== Несколько выборок ====
Пусть выборка объёмом ''N'' случайной величины ''X'' разделена на ''k'' групп с количеством наблюдений <math>n_i</math> в ''i''-ой группе.
Межгрупповая («объяснённая») дисперсия: <math>\hat{\sigma}^2_{BG}=\sum^k_{i=1} n_i (\overline {x_i}-\overline {x})^2/(k-1)</math>
Внутригрупповая («необъяснённая») дисперсия: <math>\hat{\sigma}^2_{WG}=\sum^k_{i=1}\sum^{n_i}_{j=1} (x_{ij}-\overline {x}_i)^2/(N-k)</math>
<math>F=\frac {\hat{\sigma}^2_{BG}}{\hat{\sigma}^2_{WG}}~\sim~F(k-1,N-k)</math>
Данный тест можно свести к тестированию значимости регрессии переменной X на [[фиктивная переменная|фиктивные переменные]]-индикаторы групп. Если статистика превышает критическое значение, то гипотеза о равенстве средних в выборках отвергается, в противном случае средние можно считать одинаковыми.
=== Проверка ограничений на параметры регрессии ===
Статистика теста для проверки линейных ограничений на параметры классической нормальной линейной регрессии определяется по формуле:
<math>F=\frac {(ESS_S-ESS_L)/q}{ESS_L/(n-k_L)}=\frac {(R^2_L-R^2_S)/q}{(1-R^2_L)/(n-k_L)}~\sim ~F(q,n-k_L)</math>
где <math>q=k_L-k_S</math> -количество ограничений, n-объём выборки, k-количество параметров модели, ESS-сумма квадратов остатков модели, <math>R^2</math>-коэффициент детерминации, индексы S и L относятся соответственно к короткой и длинной модели (модели с ограничениями и модели без ограничений).
==== Замечание ====
Описанный выше F-тест является ''точным'' в случае нормального распределения случайных ошибок модели. Однако F-тест можно применить и в более общем случае. В этом случае он является асимптотическим. Соответствующую F-статистику можно рассчитать на основе статистик других асимптотических тестов — [[тест Вальда|теста Вальда]] (W), [[тест множителей Лагранжа|теста множителей Лагранжа]](LM) и [[тест отношения правдоподобия|теста отношения правдоподобия]] (LR) — следующим образом:
<math>F=\frac {n-k}{q} W/n ~,~ F=\frac {n-k}{q} \frac {LM} {n-LM} ~,~F=\frac {n-k}{q}(e^{LR/n}-1)</math>
Все эти статистики асимптотически имеют распределение F(q, n-k), несмотря на то, что их значения на малых выборках могут различаться.
=== Проверка значимости линейной регрессии ===
Данный тест очень важен в регрессионном анализе и по существу является частным случаем проверки ограничений. В данном случае нулевая гипотеза — об одновременном равенстве нулю всех коэффициентов при факторах регрессионной модели (то есть всего ограничений k-1). В данном случае короткая модель — это просто константа в качестве фактора, то есть коэффициент детерминации короткой модели равен нулю. Статистика теста равна:
<math>F=\frac {R^2/(k-1)}{(1-R^2)/(n-k)}~\sim ~F(k-1,n-k)</math>
Соответственно, если значение этой статистики больше критического значения при данном уровне значимости, то нулевая гипотеза отвергается, что означает статистическую значимость регрессии. В противном случае модель признается незначимой.
==== Пример ====
Пусть оценивается линейная регрессия доли расходов на питание в общей сумме расходов на константу, логарифм совокупных расходов, количество взрослых членов семьи и количество детей до 11 лет. То есть всего в модели 4 оцениваемых параметра (k=4). Пусть по результатам оценки регрессии получен коэффициент детерминации <math>R^2=41.2366\%</math>. По вышеприведенной формуле рассчитаем значение F-статистики в случае, если регрессия оценена по данным 34 наблюдений и по данным 64 наблюдений:
<math>F_1=\frac {0.412366/(4-1)}{(1-0.412366)/(34-4)}=0,70174*10=7,02</math>
<math>F_2=\frac {0.412366/(4-1)}{(1-0.412366)/(64-4)}=0,70174*20=14.04</math>
Критическое значение статистики при 1 % уровне значимости (в Excel функция FРАСПОБР) в первом случае равно <math>F_{1\%}(3,30)=4,51</math>, а во втором случае <math>F_{1\%}(3,60)=4,13</math>. В обоих случаях регрессия признается значимой при заданном уровне значимости. В первом случае P-значение равно 0,1 %, а во втором — 0,00005 %. Таким образом, во втором случае уверенность в значимости регрессии существенно выше (существенно меньше вероятность ошибки в случае признания модели значимой).
=== Проверка гетероскедастичности ===
См. [[Тест Голдфелда-Куандта]]
== См. также ==
* [[Проверка статистических гипотез]]
* [[Статистический критерий]]
* [[Тест Вальда]]
* [[Тест отношения правдоподобия]]
* [[Тест множителей Лагранжа]]
* [[Тест Голдфелда-Куандта]]
== Примечания ==
{{Примечания}}
[[Категория:Статистические критерии]]
[[Категория:Дисперсионный анализ]]' |
Унифицированная разница изменений правки (edit_diff ) | '@@ -6,4 +6,37 @@
Более удобный способ проверки гипотез — с помощью [[p-значение|p-значения]] <math>p(F)</math> — вероятностью того, что случайная величина с данным распределением Фишера превысит данное значение статистики. Если <math>p(F)</math> (для двустороннего теста — <math>2p(F</math>)) меньше уровня значимости <math>\alpha</math>, то нулевая гипотеза отвергается, в противном случае принимается.
+
+== Расчет критерия φ* ==
+1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого "есть эффект" и тех, у кого "нет эффекта". Если признак измерен количественно, использовать критерий λ для поиска оптимальной точки разделения.
+
+2. Начертить четырёхклеточную (синоним: четырёхпольная) таблицу из двух столбцов и двух строк. Первый столбец - "есть эффект"; второй столбец - "нет эффекта"; первая строка сверху - 1 группа (выборка); вторая строка - 2 группа (выборка).
+
+3. Подсчитать количество испытуемых в первой группе, у которых "есть эффект", и занести это число в левую верхнюю ячейку таблицы.
+
+4. Подсчитать количество испытуемых в первой выборке, у которых "нет эффекта", и занести это число в правую верхнюю ячейку таблицы. Подсчитать сумму по двум верхним ячейкам. Она должна совпадать с количеством испытуемых в первой группе.
+
+5. Подсчитать количество испытуемых во второй группе, у которых "есть эффект", и занести это число в левую нижнюю ячейку таблицы.
+
+6. Подсчитать количество испытуемых во второй выборке, у которых "нет эффекта", и занести это число в правую нижнюю ячейку таблицы. Подсчитать сумму по двум нижним ячейкам. Она должна совпадать с количеством испытуемых во второй группе (выборке).
+
+7. Определить процентные доли испытуемых, у которых "есть эффект", путем отнесения их количества к общему количеству испытуемых в данной группе (выборке). Записать полученные процентные доли соответственно в левой верхней и левой нижней ячейках таблицы в скобках, чтобы не перепутать их с абсолютными значениями.
+
+8. Проверить, не равняется ли одна из сопоставляемых процентных долей нулю. Если это так, попробовать изменить это, сдвинув точку разделения групп в ту или иную сторону. Если это невозможно или нежелательно, отказаться от критерия φ* и использовать критерий χ2.
+
+9. Определить по Табл. XII Приложения 1 величины углов φ для каждой из сопоставляемых процентных долей.
+
+10. Подсчитать эмпирическое значение φ* по формуле:
+
+где: φ1 - угол, соответствующий большей процентной доле;
+
+φ2 - угол, соответствующий меньшей процентной доле;
+
+n1 - количество наблюдений в выборке 1;
+
+n2 - количество наблюдений в выборке 2.
+
+11. Сопоставить полученное значение φ* с критическими значениями: φ* ≤1,64 (р<0,05) и φ* ≤2,31 (р<0,01).
+
+Если φ*эмп ≤φ*кр. H0 отвергается.
== Примеры F-тестов ==
' |
Новый размер страницы (new_size ) | 15776 |
Старый размер страницы (old_size ) | 11618 |
Изменение размера в правке (edit_delta ) | 4158 |
Добавленные в правке строки (added_lines ) | [
0 => false,
1 => '== Расчет критерия φ* ==',
2 => '1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого "есть эффект" и тех, у кого "нет эффекта". Если признак измерен количественно, использовать критерий λ для поиска оптимальной точки разделения.',
3 => false,
4 => '2. Начертить четырёхклеточную (синоним: четырёхпольная) таблицу из двух столбцов и двух строк. Первый столбец - "есть эффект"; второй столбец - "нет эффекта"; первая строка сверху - 1 группа (выборка); вторая строка - 2 группа (выборка).',
5 => false,
6 => '3. Подсчитать количество испытуемых в первой группе, у которых "есть эффект", и занести это число в левую верхнюю ячейку таблицы.',
7 => false,
8 => '4. Подсчитать количество испытуемых в первой выборке, у которых "нет эффекта", и занести это число в правую верхнюю ячейку таблицы. Подсчитать сумму по двум верхним ячейкам. Она должна совпадать с количеством испытуемых в первой группе.',
9 => false,
10 => '5. Подсчитать количество испытуемых во второй группе, у которых "есть эффект", и занести это число в левую нижнюю ячейку таблицы.',
11 => false,
12 => '6. Подсчитать количество испытуемых во второй выборке, у которых "нет эффекта", и занести это число в правую нижнюю ячейку таблицы. Подсчитать сумму по двум нижним ячейкам. Она должна совпадать с количеством испытуемых во второй группе (выборке).',
13 => false,
14 => '7. Определить процентные доли испытуемых, у которых "есть эффект", путем отнесения их количества к общему количеству испытуемых в данной группе (выборке). Записать полученные процентные доли соответственно в левой верхней и левой нижней ячейках таблицы в скобках, чтобы не перепутать их с абсолютными значениями.',
15 => false,
16 => '8. Проверить, не равняется ли одна из сопоставляемых процентных долей нулю. Если это так, попробовать изменить это, сдвинув точку разделения групп в ту или иную сторону. Если это невозможно или нежелательно, отказаться от критерия φ* и использовать критерий χ2.',
17 => false,
18 => '9. Определить по Табл. XII Приложения 1 величины углов φ для каждой из сопоставляемых процентных долей.',
19 => false,
20 => '10. Подсчитать эмпирическое значение φ* по формуле:',
21 => false,
22 => 'где: φ1 - угол, соответствующий большей процентной доле;',
23 => false,
24 => 'φ2 - угол, соответствующий меньшей процентной доле;',
25 => false,
26 => 'n1 - количество наблюдений в выборке 1;',
27 => false,
28 => 'n2 - количество наблюдений в выборке 2.',
29 => false,
30 => '11. Сопоставить полученное значение φ* с критическими значениями: φ* ≤1,64 (р<0,05) и φ* ≤2,31 (р<0,01).',
31 => false,
32 => 'Если φ*эмп ≤φ*кр. H0 отвергается.'
] |
Удалённые в правке строки (removed_lines ) | [] |
Все внешние ссылки, добавленные в правке (added_links ) | [] |
Все внешние ссылки в новом тексте (all_links ) | [
0 => 'http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm'
] |
Ссылки на странице до правки (old_links ) | [
0 => 'http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm'
] |
Была ли правка сделана через выходной узел сети Tor (tor_exit_node ) | false |
Unix-время изменения (timestamp ) | 1552258249 |