Теорема Брианшона

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Теорема Брианшона — классическая теорема проективной геометрии. Теорема была доказана Брианшоном в 1810 году.

Формулировка

[править | править код]

Если шестиугольник описан около конического сечения, то три диагонали, соединяющие противоположные вершины этого шестиугольника, проходят через одну точку.

Вырожденные случаи

[править | править код]
  • Если стороны шестиугольника проходят поочерёдно через две данные точки, то три диагонали, соединяющие его противоположные вершины, проходят через одну точку.
  • В произвольном треугольнике чевианы, соединяющие вершины с точкой касания противоположной стороны, пересекаются в одной точке.
Brianshon-4-1
  • В описанном четырёхугольнике диагонали и прямые, соединяющие точки касания противоположных сторон, пересекаются в одной точке.
  • Коксетер Г. С. М., Грейтцер С. П. Новые встречи с геометрией. — М.: Наука, 1978. — Т. 14. — (Библиотека математического кружка).