Теорема Шмидта
Перейти к навигации
Перейти к поиску
Теорема Шмидта - теорема о свойствах расширения локально конечной группы.
Формулировка
[править | править код]Расширение локально конечной группы посредством локально конечной группы само локально конечно.
Доказательство
[править | править код]Проверим, что каждое конечное множество из порождает конечную подгруппу. По условию факторгруппа конечна. Увеличив, если нужно, множество , будем считать, что оно замкнуто относительно обратных элементов и содержит представители всех смежных классов по . Тогда для любых , где , . Отсюда следует, что любое произведение элементов из можно записать как произведение некоторого элемента из на произведение нектороых . Так как всевозможные порждают конечную подгруппу, то всё доказано.
Литература
[править | править код]- Каргаполов, М. И., Мерзляков Ю. И. Основы теории групп. — М. : Наука, 1972. — С. 208.