Транспозиционная матрица
Транспозиционная матрица Tr(X) - это квадратная матрица размера n, равного целой степени 2, каждый элемент Tr(X)ij которой содержит один из элементов {x} заданного вектора X размера n, индекс которого равен единице плюс побитовое сложение по модулю 2 (XOR) номера строки i минус единица и номер столбца j минус единица элемента Tr(X)ij.
Формула
[править | править код]Таким образом, формула, по которой вычисляются элементы матрицы Tr(X), выглядит следующим образом:
где и символом обозначена битовая операция «сложение по модулю 2.
Например, транспозиционная матрица , полученная из вектора:
имеет вид:
- .
Свойство четвёрок
[править | править код]Произвольная пара строк строки (или пара столбцов) транспозиционной матрицы содержит четвёрок из элементов с равными значениями диагональных элементов. Например, если и — два случайно выбранных элемента из одного столбца матрицы , то из этого свойства следует, что -матрица содержит четвёрку из элементов , для которой выполняются уравнения и . Это свойство «свойство четвёрок» является специфическим для -матриц.
Другие свойства
[править | править код]- Матрица Tr(X) является симметричной матрицей
- Матрица Tr(X) является персимметричной матрицей, то есть она также симметрична относительно своей второй диагонали
Транспозиционная матрица со взаимно ортогональными строками
[править | править код]Свойство четвёрок позволяет получить из транспозиционной матрицы матрицу со взаимно ортогональными строками путём изменения знака нечётному количеству элементов в каждой из четвёрок , . Существует алгоритм построения -матрицы с использованием покомпонентного произведения матрицы и -мерной матрицы Адамара , строки которой (кроме первой) переставлены таким образом, что строки результирующей матрицы взаимно ортогональны:
где:
- «» — произведение Адамара,
- — единичная матрица,
- — -мерная матрица Адамара с перестановкой строк , которая меняет знак нечётному количеству элементов в каждой из четвёрок;
- — вектор, из которого выводятся элементы -матрицы.
Порядок строк матрицы Адамара был получен экспериментально для матриц размеров 2, 4 и 8. Порядок строк матрицы Адамара (относительно матрицы Сильвестра — Адамара) не зависит от вектора . Было доказано[1], что если — единичный вектор (), то .
Пример получения матрицы Trs
[править | править код]Транспозиционная матрица с взаимно ортогональными строками при , получается из вектора по формуле:
- ,
где — матрица, полученная из вектора , H(R) — матрица Адамара со сдвигом строк в заданном порядке R, для которого строки результирующей Матрицы Trs взаимно ортогональны. Первая строка результирующей матрицы содержит элементы вектора без перестановок и перемен знака. Учитывая, что строки матрицы взаимно ортогональны:
- ,
следовательно, матрица вращает вектор , из которого она получена, в направлении оси . Порядок строк матрицы Адамара не зависит от вектора . Опубликованы примеры генерации матриц и для . Остаётся открытым вопрос, можно ли создать матрицы Trs размера больше 8.
Примечания
[править | править код]- ↑ Zhelezov O. I. Determination of a Special Case of Symmetric Matrices and Their Applications. Current Topics on Mathematics and Computer Science Vol. 6, 29-45 ISBN= 978-93-91473-89-1
Литература
[править | править код]- Беллман Р. Введение в теорию матриц. — М.: Мир, 1969 (djvu).
- Гантмахер Ф. Р. Теория матриц. — 5-е изд. — М.: Физматлит, 2004. — 560 с. — ISBN 5-9221-0524-8.; (2-е изд.). — М.: Наука, 1966 (djvu).
- Голуб Дж. (Gene H. Golub), Ван Лоун Ч. (Charles F. Van Loan) Матричные вычисления. — М.: Мир, 1999. — 548 с. — ISBN 5-03-002406-9
- Курош А. Г. Курс высшей алгебры. — 9-е изд. — М.: Наука, 1968. — 432 с.