Ускорение свободного падения

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Ускорение свободного падения на поверхности[a] некоторых небесных тел, м/с² и g
Земля 9,81 м/с² 1,00 g Солнце 273,1 м/с² 27,85 g
Луна 1,62 м/с² 0,165 g Меркурий 3,70 м/с² 0,378 g
Венера 8,88 м/с² 0,906 g Марс 3,86 м/с² 0,394 g
Юпитер 24,79 м/с² 2,528 g Сатурн 10,44 м/с² 1,065 g
Уран 8,86 м/с² 0,903 g Нептун 11,09 м/с² 1,131 g
Эрида 0,82 ± 0,02 м/с² 0,084 ± 0,002 g Плутон 0,617 м/с² 0,063 g

Ускоре́ние свобо́дного паде́ния (ускоре́ние си́лы тя́жести[1]) — ускорение, придаваемое телу силой тяжести в данной точке гравитационного поля (или, иными словами, ускорение тела при свободном падении), при исключении из рассмотрения других сил.

В соответствии с уравнением движения тел в неинерциальных системах отсчёта[2] ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.

Ускорение свободного падения на поверхности Земли g (обычно произносится как «же») варьируется от 9,780 м/с² на экваторе до 9,82 м/с² на полюсах[3]. Стандартное («нормальное») значение, принятое при построении систем единиц, составляет 9,80665 м/с²[4][5]. Стандартное значение g было определено как «среднее» в каком-то смысле на всей Земле: оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря. В приблизительных расчётах его обычно округляют до 9,81, 9,8 или даже до 10 м/с².

Физическая сущность

[править | править код]
Две компоненты ускорения свободного падения на Земле g: гравитационная (в приближении сферически симметричной зависимости плотности от расстояния от центра Земли) равна GM/r2 и центробежная, равная ω2a, где a — расстояние до земной оси, ω — угловая скорость вращения Земли

Для определённости будем считать, что речь идёт о свободном падении на Земле. Эту величину можно представить как векторную сумму двух слагаемых: гравитационного ускорения, вызванного земным притяжением, и центробежного ускорения, связанного с вращением Земли.

Центробежное ускорение

[править | править код]

Центробежное ускорение является следствием вращения Земли вокруг своей оси. Именно центробежное ускорение, вызванное вращением Земли вокруг своей оси, вносит наибольший вклад в неинерциальность системы отсчёта, связанную с Землёй. В точке, находящейся на расстоянии a от оси вращения, оно равно ω2a, где ω — угловая скорость вращения Земли, определяемая как ω = 2π/T, а Т — время одного оборота вокруг своей оси, для Земли примерно равное 86164 секундам (звёздные сутки). Центробежное ускорение направлено по нормали к оси вращения Земли. На экваторе оно составляет 3,39636 см/с², причём на других широтах направление вектора его не совпадает с направлением вектора гравитационного ускорения, направленного к центру Земли.

Гравитационное ускорение

[править | править код]
Гравитационное ускорение на различной высоте h над уровнем моря
h, км g, м/с² h, км g, м/с²
0 9,8066 20 9,7452
1 9,8036 50 9,6542
2 9,8005 80 9,5644
3 9,7974 100 9,505
4 9,7943 120 9,447
5 9,7912 500 8,45
6 9,7882 1000 7,36
8 9,7820 10 000 1,50
10 9,7759 50 000 0,125
15 9,7605 400 000 0,0025

В соответствии с законом всемирного тяготения, величина гравитационного ускорения на поверхности Земли или космического тела связана с его массой M следующим соотношением:

,

где G — гравитационная постоянная (6,67430(15) · 10−11 м3·с−2·кг−1)[6], а r — радиус планеты. Это соотношение справедливо в предположении, что плотность вещества планеты сферически симметрична. Приведённое соотношение позволяет определить массу любого космического тела, включая Землю, зная её радиус и гравитационное ускорение на её поверхности, либо, наоборот, по известной массе и радиусу определить ускорение свободного падения на поверхности.

Исторически масса Земли была впервые определена Генри Кавендишем, который провёл первые измерения гравитационной постоянной.

Гравитационное ускорение на высоте h над поверхностью Земли (или иного космического тела) можно вычислить по формуле:

,
где M — масса планеты.

Ускорение свободного падения на Земле

[править | править код]

Ускорение свободного падения у поверхности Земли зависит от широты. Приблизительно оно может быть вычислено (в м/с²) по эмпирической формуле[7][8]:

где  — широта рассматриваемого места,
 — высота над уровнем моря в метрах.

Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. При более точных расчётах необходимо использовать одну из моделей гравитационного поля Земли[англ.][9], дополнив её поправками, связанными с вращением Земли, приливными воздействиями. На ускорение свободного падения влияют и другие факторы, например, атмосферное давление, которое меняется в течение суток: от атмосферного давления зависит плотность воздуха в большом объёме, а следовательно и результирующая сила тяжести, изменение которой могут зафиксировать высокочувствительные гравиметры[10].

Пространственные изменения гравитационного поля Земли (гравитационные аномалии) связаны с неоднородности плотности в её недрах, что может быть использовано для поиска залежей полезных ископаемых методами гравиразведки.

Почти везде ускорение свободного падения на экваторе ниже, чем на полюсах, за счёт центробежных сил, возникающих при вращении планеты, а также потому, что радиус r на полюсах меньше, чем на экваторе из-за сплюснутой формы планеты. Однако места экстремально низкого и высокого значения g несколько отличаются от теоретических показателей по этой модели. Так, самое низкое значение g (9,7639 м/с²) зафиксировано на горе Уаскаран в Перу в 1000 км южнее экватора, а самое большое (9,8337 м/с²) — в 100 км от Северного полюса[11].

Ускорение свободного падения у поверхности Земли может быть измерено посредством гравиметра. Различают две разновидности гравиметров: абсолютные и относительные. Абсолютные гравиметры измеряют ускорение свободного падения непосредственно. Относительные гравиметры, некоторые модели которых действуют по принципу пружинных весов, определяют приращение ускорения свободного падения относительно значения в некотором исходном пункте.

Ускорение свободного падения на поверхности Земли или другой планеты может быть также вычислено на основе данных о вращении планеты и её гравитационном поле. Последнее может быть определено посредством наблюдения за орбитами спутников и движения других небесных тел вблизи рассматриваемой планеты.

Комментарии

[править | править код]
  1. У планет газовых гигантов и звёзд «поверхность» понимается как область меньших высот в атмосфере, где давление равно атмосферному давлению на Земле на уровне моря (1,013×105 Па). Также у звёзд поверхностью иногда считают поверхность фотосферы.

Примечания

[править | править код]
  1. Охоцимский, 1990, с. 27.
  2. Аналог уравнения второго закона Ньютона, выполняющийся для неинерциальных систем отсчёта.
  3. Свободное падение тел. Ускорение свободного падения. Архивировано из оригинала 20101219 года.
  4. Декларация III Генеральной конференции по мерам и весам (1901) (англ.). Международное бюро мер и весов. Дата обращения: 9 апреля 2013. Архивировано 8 июля 2018 года.
  5. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Изд-во стандартов, 1990. — С. 237.
  6. CODATA Value: Newtonian constant of gravitation. physics.nist.gov. Дата обращения: 7 марта 2020. Архивировано 23 сентября 2020 года.
  7. Грушинский Н. П. Гравиметрия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 521. — 707 с. — 100 000 экз.
  8. Ускорение свободного падения // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга — Робертсона — Стримеры. — С. 245—246. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  9. ICCEM - table of models (англ.). Дата обращения: 10 ноября 2021. Архивировано из оригинала 24 августа 2013 года.
  10. Василевский А. Н., Дашевский Ю. А. Модельные оценки помех при скважинном гравиметрическом мониторинге месторождений нефти и газа // Геология и геофизика. — 2015. — Т. 56, № 5. — doi:10.15372/GiG20150507. Архивировано 2 июня 2018 года.
  11. Перуанцам живется легче, чем полярникам? Дата обращения: 21 июля 2016. Архивировано 16 сентября 2016 года.

Литература

[править | править код]
  • Енохович А. С. Краткий справочник по физике. — М.: Высшая школа, 1976. — 288 с.
  • Охоцимский Д. Е., Сихарулидзе Ю. Г. Основы механики космического полета: Учеб. пособие. — М.: Наука, Гл. ред. физ.-мат. лит., 1990. — 448 с. — ISBN 5-02-014090-2.