陈模型
外观
在金融学领域,陈琳模型(Chen model)是一个数学模型,描述利率的动态演变过程。它是一种“三因素模型”(短期利率模型),因为它所描述的利率变动是由三种市场风险推动的。陈琳模型是第一个随机均值和随机波动率的利率模型,由经济学家陈琳发表于1994年。陈琳是哈佛大学毕业的经济学家,曾为美国哈佛大学,新加坡大学,贝鲁特美国大学,韩国延世大学,瑞士金融学院,美林证券,里昂信贷银行和美国联邦储备局工作。
在陈琳模型中,瞬时利率的演变是由以下随机微分方程决定的:
陈琳模型被全球金融机构广泛采用, 它不但具有实际意义, 同时也具有重要的学术价值。在一份权威的现代金融学文献述评中(“金融学的连续时间方法:回顾与评价” [1]),陈琳模型被列为利率期限结构的主要模型。美国学者詹姆斯和韦伯的教科书有几节专门讨论陈琳模型。瑞士学者吉布森等人的利率理论综述也有专门一节介绍陈琳模型。丹麦学者安德森等人的文章专门致力于研究、评估和推广陈琳模型。美国学者伽伦等人的文章测试和验证了陈琳模型和其他利率模型。 美国博士生蔡在她的博士论文研究中测试陈琳模型和其他竞争模型。
相关条目
[编辑]参看
[编辑]- ^ Suresh M. Sundaresan. Continuous-Time Methods in Finance: A Review and an Assessment (PDF). The Journal of Finance. August 2000, LV (4) [2022-11-16]. (原始内容存档 (PDF)于2021-10-20).
- Lin Chen. Stochastic Mean and Stochastic Volatility — A Three-Factor Model of the Term Structure of Interest Rates and Its Application to the Pricing of Interest Rate Derivatives. Financial Markets, Institutions, and Instruments. 1996, 5: 1–88.
- Lin Chen. Interest Rate Dynamics, Derivatives Pricing, and Risk Management. Lecture Notes in Economics and Mathematical Systems, 435. Springer. 1996. ISBN 978-3540608141.
- Jessica James and Nick Webber. Interest Rate Modelling. Wiley Finance. 2000.
- Rajna Gibson,François-Serge Lhabitant and Denis Talay. Modeling the Term Structure of Interest Rates: A Review of the Literature. RiskLab, ETH. 2001.
- Frank J. Fabozzi and Moorad Choudhry. The Handbook of European Fixed Income Securities. Wiley Finance. 2007.
- Sanjay K. Nawalkha, Gloria M. Soto, Natalia A. Beliaeva. Dynamic Term Structure Modeling: The Fixed Income Valuation Course. Wiley Finance. 2007.
- Sundaresan, Suresh M. Continuous-Time Methods in Finance: A Review and an Assessment. The Journal of Finance. 2000, 55 (4): 1569–1622. doi:10.1111/0022-1082.00261.
- Andersen, T.G., L. Benzoni, and J. Lund. Stochastic Volatility, Mean Drift, and Jumps in the Short-Term Interest Rate,. Working Paper, Northwestern University. 2004.
- Gallant, A.R., and G. Tauchen. Estimation of Continuous Time Models for Stock Returns and Interest Rates,. Macroeconomic Dynamics 1, 135-168. 1997,.
- Cai, L. Specification Testing for Multifactor Diffusion Processes:An Empirical and Methodological Analysis of Model Stability Across Different Historical Episodes (PDF). Rutgers University. 2008.[永久失效链接]