𨭎
𨭎是一種放射性極高的超重元素,所有同位素的半衰期都很短,非常不穩定,壽命最長的同位素的半衰期也只有數分鐘。在元素週期表中其位於d區。它是第7週期、第6族的成員,過渡金屬6d電子軌域的第4個元素,作為鎢之下的同族元素。
西元1974年,前蘇聯與美國的實驗室分別合成出了數顆106號元素的原子。而蘇聯科學家和美國科學家之間為了發現的優先權以及元素的命名爭執數年,最終國際純化學暨應用化學聯合會(IUPAC)才將𨭎作為該元素的正式名稱,以紀念對多個超鈾元素的發現有著重要貢獻的美國化學家格倫·西奧多·西博格。此外,它也是唯二用當時仍在世的人命名的元素,另一個是鿫,原子序118。[b]
概論
[編輯]超重元素的合成
[編輯]外部影片連結 | |
---|---|
基於澳大利亞國立大學的計算,核聚變未成功的可視化[8] |
超重元素[c]的原子核是在兩個不同大小的原子核[d]的聚變中產生的。粗略地說,兩個原子核的質量之差越大,兩者就越有可能發生反應。[14]由較重原子核組成的物質會作為靶子,被較輕原子核的粒子束轟擊。兩個原子核只能在距離足夠近的時候,才能聚變成一個原子核。原子核都帶正電荷,會因為靜電排斥力而相互排斥,所以只有兩個原子核的距離足夠短時,強核力才能克服這個排斥力並發生聚變。粒子束因此被粒子加速器大大加速,以使這種排斥力與粒子束的速度相比變得微不足道。[15]施加到粒子束上以加速它們的能量可以使它們的速度達到光速的十分之一。但是,如果施加太多能量,粒子束可能會分崩離析。[15]
不過,只是靠得足夠近不足以使兩個原子核聚變:當兩個原子核逼近彼此時,它們通常會融為一體約10−20秒,之後再分開(分開後的原子核不需要和先前相撞的原子核相同),而非形成單一的原子核。[15][16]這是因為在嘗試形成單個原子核的過程中,靜電排斥力會撕開正在形成的原子核。[15]每一對目標和粒子束的特徵在於其截面,即兩個原子核彼此接近時發生聚變的概率。[e]這種聚變是量子效應的結果,其中原子核可通過量子穿隧效應克服靜電排斥力。如果兩個原子核可以在該階段之後保持靠近,則多個核相互作用會導致能量的重新分配和平衡。[15]
兩個原子核聚變產生的原子核處於非常不穩定,[15]被稱為複合原子核的激發態。[18]複合原子核為了達到更穩定的狀態,可能會直接裂變,[19]或是放出一些中子來帶走激發能量。如果激發能量太小,無法放出中子,複合原子核就會放出γ射線來帶走激發能量。這個過程會在原子核碰撞後的10−16秒發生,並創造出更穩定的原子核。[19]原子核只有在10−14秒內不衰變,IUPAC/IUPAP聯合工作小組才會認為它是化學元素。這個值大約是原子核得到它的外層電子,顯示其化學性質所需的時間。[20][f]
衰變和探測
[編輯]粒子束穿過目標後,會到達下一個腔室——分離室。如果反應產生了新的原子核,它就會存在於這個粒子束中。[22]在分離室中,新的原子核會從其它核素(原本的粒子束和其它反應產物)中分離,[g]到達半導體探測器後停止。這時標記撞擊探測器的確切位置、能量和到達時間。[22]這個轉移需要10−6秒的時間,因此原子核需要存在這麼長的時間才能被檢測到。[25]若衰變發生,衰變的原子核被再次記錄,並測量位置、衰變能量和衰變時間。[22]
原子核的穩定性源自於強核力,但強核力的作用距離很短,隨着原子核越來越大,強核力對最外層的核子(質子和中子)的影響減弱。同時,原子核會被質子之間,範圍不受限制的靜電排斥力撕裂。[26]強核力提供的核結合能以線性增長,而靜電排斥力則以原子序數的平方增長。後者增長更快,對重元素和超重元素而言變得越來越重要。[27][28]超重元素理論預測[29]及實際觀測到[2]的主要衰變方式,即α衰變和自發裂變都是這種排斥引起的。[h]幾乎所有會α衰變的核素都有超過210個核子,[31]而主要通過自發裂變衰變的最輕核素有238個核子。[2]有限位勢壘在這兩種衰變方式中抑制了原子核衰變,但原子核可以隧穿這個勢壘,發生衰變。[27][28]
放射性衰變中常產生α粒子是因為α粒子中的核子平均質量足夠小,足以使α粒子有多餘能量離開原子核。[33]自發裂變則是由靜電排斥力將原子核撕裂而致,會產生各種不同的產物。[28]隨着原子序數增加,自發裂變迅速變得重要:自發裂變的部分半衰期從92號元素鈾到102號元素鍩下降了23個數量級,[34]從90號元素釷到100號元素鐨下降了30個數量級。[35]早期的液滴模型因此表明有約280個核子的原子核的裂變勢壘會消失,因此自發裂變會立即發生。[28][36]之後的核殼層模型表明有大約300個核子的原子核將形成一個穩定島,其中的原子核不易發生自發裂變,而是會發生半衰期更長的α衰變。[28][36]隨後的研究發現預測存在的穩定島可能比原先預期的更遠,還發現長壽命錒系元素和穩定島之間的原子核發生變形,獲得額外的穩定性。[37]對較輕的超重核素[38]以及那些更接近穩定島的核素[34]的實驗發現它們比先前預期的更難發生自發裂變,表明核殼層效應變得重要。[i]
α衰變由發射出去的α粒子記錄,在原子核衰變之前就能確定衰變產物。如果α衰變或連續的α衰變產生了已知的原子核,則可以很容易地確定反應的原始產物。[j]因為連續的α衰變都會在同一個地方發生,所以通過確定衰變發生的位置,可以確定衰變彼此相關。[22]已知的原子核可以通過它經歷的衰變的特定特徵來識別,例如衰變能量(或更具體地說,發射粒子的動能)。[k]然而,自發裂變會產生各種分裂產物,因此無法從其分裂產物確定原始核素。[l]
嘗試合成超重元素的物理學家可以獲得的信息是探測器收集到的信息,即原子核到達探測器的位置、能量、時間以及它衰變的信息。他們分析這些數據並試圖得出結論,確認它確實是由新元素引起的。如果提供的數據不足以得出創造出來的核素確實是新元素的結論,且對觀察到的現象沒有其它解釋,就可能在解釋數據時出現錯誤。[m]歷史
[編輯]發現
[編輯]𨭎原稱106號元素,首次於1974年在阿伯特·吉奧索和E. Kenneth Hulet的帶領下,利用勞倫斯伯克利國家實驗室的超重離子直線加速器合成出來。[49]他們用18O離子撞擊249Cf目標,並產生出新的核素263Sg。該核素進行放射衰變,半衰期為0.9 ± 0.2秒。
命名
[編輯]發現106號元素的美國團隊提出將新元素命名為seaborgium(Sg),以紀念美國化學家格倫·西奧多·西博格。他是該團隊的成員之一,並在多個錒系元素的發現中都作出了重要的貢獻。這個名稱引起了爭議。IUPAC所用的臨時名稱為unnilhexium(Unh),根據IUPAC元素系統命名法。1994年,一個IUPAC委員會提出將元素命名為rutherfordium(104號元素的現稱),並規定元素不能以在世的人物命名。[50]美國化學學會強烈抗議這項規定。他們指出,在阿爾伯特·愛因斯坦在世時命名的einsteinium(鑀)已經設下了先例,而且調查顯示化學家們對西博格仍然在世並沒有意見。鑒於國際上對104至107號元素名均存在較大分歧,1997年8月27日IUPAC在協商後正式對101至109號元素的重新英文定名,𨭎的英文現稱seaborgium得到了IUPAC的採用及國際上的承認。[51]
全國科學技術名詞化學名詞審定委員會據此於1998年7月8日重新審定、公佈101至109號元素的中文命名,其中首次給出106號元素中文名:「𨭎」(xǐ,音同「喜」)[52],名稱源自IUPAC決定的英文名seaborgium(Sg),以紀念美國化學家格倫·西奧多·西博格。[53][54]
化學特性
[編輯]推算的特性
[編輯]- 氧化態
經過推算,𨭎是6d系過渡金屬的第3個元素,也是元素週期表中6族的最重元素,位於鉻、鉬和鎢以下。該族的所有元素都呈現出+6氧化態,其穩定性隨著元素的重量而增加。因此𨭎估計會有穩定的+6態。這個族的穩定+5和+4態也在較重的元素中呈現出來;除鉻(III)以外,該族的+3態是還原性的。
- 化學
𨭎的許多化學特性都是通過同族較輕元素的反應中推算出來的,如從鉬和鎢。鉬和鎢很容易形成三氧化物MO3,所以𨭎也應該會形成SgO3。已知的MO3氧化物能溶於鹼當中,並形成氧離子,因此𨭎也應形成𨭎酸鹽離子SgO42−。另外,WO3能與酸反應,意味著SgO3也會是兩性的。鉬的氧化物MoO3會與水氣反應,產生氫氧化物MoO2(OH)2,所以SgO2(OH)2也是可能形成的。同族較重的元素容易形成具揮發性和不穩定的六鹵化物MX6(X=Cl,F)。只有鎢形成不穩定的六溴化鎢WBr6。因此,SgF6和SgCl6都是可能形成的化合物,其繼承鎢的特性有可能表現在六溴化物SgBr6的更高穩定性上。這些鹵化物在氧和水氣中都是不穩定的,並會立即形成具揮發性的氧鹵化物MOX4和MO2X2。故此SgOX4(X=F,Cl)和SgO2X2(X=F,Cl)應該會形成。在水溶狀態下,它們和氟離子形成各種氧氟絡負離子,例如MOF5−和MO3F33−。𨭎也預計會形成類似的絡合物。
實驗化學
[編輯]氣態
[編輯]最初研究𨭎化學的實驗主要是通過對揮發性氧氯化物進行氣態熱力色譜法。𨭎原子首先在這條反應中產生: 248Cm(22Ne,4n)266Sg,加熱後與O2/HCl混合物反應。產生出的氧氯化物的吸附屬性在測量之後與鉬和鎢作對比。結果顯示,𨭎形成了揮發性氧氯化物,與其他6族元素相似:
- Sg + O
2 + 2 HCl → SgO
2Cl
2 + H
2
2001年,一組人員繼續研究𨭎的氣態化學。他們把𨭎與O2在H2O環境下反應。情況與形成氧氯化物時相近,實驗結果顯示形成了氫氧化氧𨭎,該反應在較輕的6族元素中是常見的。[55]
- 2 Sg + 3 O
2 → 2 SgO
3 - SgO
3 + H
2O → SgO
2(OH)
2
水溶態
[編輯]在水溶狀態下,𨭎的化學與鉬和鎢的相近,會形成穩定的+6氧化態。𨭎首先在HNO3/HF溶液中被稀釋成正離子交換樹脂,可能形成中性的SgO2F2或絡負離子[SgO2F3]−。0.1 M的HNO3溶液無法稀釋𨭎,而相比之下鉬和鎢則可以。這意味著[Sg(H2O)6]6+的水解最多進行到絡正離子[Sg(OH)5(H2O)]+為止。
0價化合物
[編輯]𨭎除了+6價外,目前唯一已知的氧化態為0。在2014年,𨭎被發現了羰基配合物Sg(CO)6,和同族形成的Cr(CO)6、Mo(CO)6、W(CO)6類似。Sg(CO)6是揮發性的化合物,和二氧化硅接觸迅速反應。[56]
化合物及絡離子
[編輯]公式 | 名稱 |
---|---|
SgO2Cl2 | 氧氯化𨭎 |
SgO2F2 | 氧氟化𨭎 |
SgO3 | 三氧化𨭎 |
SgO2(OH)2 | 氫氧化氧𨭎 |
[SgO2F3]− | trifluorodioxoseaborgate(VI) |
[Sg(OH)5(H2O)]+ | aquapentahydroxyseaborgium(VI) |
Sg(CO)6 | 六羰基𨭎 |
同位素
[編輯]同位素 | 半衰期[n] | 衰變方式 | 發現年份 | 發現方法 | |
---|---|---|---|---|---|
數值 | 來源 | ||||
258Sg | 2.7 ms | [2] | SF | 1994年 | 209Bi(51V,2n) |
259Sg | 402 ms | [2] | α | 1985年 | 207Pb(54Cr,2n) |
259mSg | 226 ms | [2] | α, SF | 2015年 | 206Pb(54Cr,n)[57] |
260Sg | 4.95 ms | [2] | SF, α | 1985年 | 208Pb(54Cr,2n) |
261Sg | 183 ms | [2] | α, β+, SF | 1985年 | 208Pb(54Cr,n) |
261mSg | 9.3 μs | [2] | IT | 2009年 | 208Pb(54Cr,n) |
262Sg | 10.3 ms | [2] | SF, α | 2001年 | 270Ds(—,2α) |
263Sg | 940 ms | [2] | α, SF | 1994年 | 271Ds(—,2α) |
263mSg | 420 ms | [2] | α | 1974年 | 249Cf(18O,4n) |
264Sg | 78 ms | [2] | SF | 2006年 | 238U(34Si,4n) |
265Sg | 9.2 s | [2] | α | 1993年 | 248Cm(22Ne,5n) |
265mSg | 16.4 s | [2] | α | 1993年 | 248Cm(22Ne,5n) |
266Sg | 390 ms | [2] | SF | 2004年 | 270Hs(—,α) |
267Sg | 9.8 min | [1] | SF, α | 2004年 | 271Hs(—,α) |
267mSg | 1.7 min | [1] | SF | 2024年 | 271Hs(—,α) |
268Sg | 13 s | [58] | SF | 2022年 | 276Ds(—,2α) |
269Sg | 5 min | [2] | α | 2010年 | 285Fl(—,4α) |
271Sg | 31 s | [6] | α, SF | 2003年 | 287Fl(—,4α) |
如同其他高原子序的超重元素,𨭎的所有同位素都具有極高的放射性,壽命短暫,非常不穩定。目前已知的𨭎同位素有12個(不包括亞穩態及K旋同核異構體)。半衰期最長的是267Sg和269Sg,半衰期分別為9.8分鐘和5分鐘。半衰期最短的是261mSg,會進行內部轉變。其半衰期為92微秒。
同核異構體
[編輯]- 266Sg
最初的研究辨認出一次8.63 MeV的α衰變,半衰期約為21秒,並指向266Sg的基態。之後的研究辨認出一個以8.52和8.77 MeV能量進行α放射的核素,其半衰期約為21秒。這對偶-偶核素來說是罕見的。近期有關合成270Hs的工作辨認出266Sg進行自發裂變,半衰期只有360毫秒。最近對277Cn和269Hs的研究為265Sg和261Rf的衰變帶來了新的信息。結果指出,原先的8.77 MeV活動應該指向265Sg。因此,自發裂變是源自基態的,而8.52 MeV的活動則是源自高旋的K同核異構體的。要證實這一切則仍需要更多的實驗。最近重新評估數據後的結論指出,8.52 MeV的活動應該指向265Sg,而266Sg只會進行裂變。
- 265Sg
直接合成265Sg的實驗產生了4條α線:8.94、8.84、8.76和8.69 MeV,半衰期為7.4秒。對產自277Cn和269Hs衰變的265Sg的觀測指出,8.69 MeV的α線可能與半衰期約為20秒的一個同核異構能級有關。這個能級很可能就是混淆指向266Sg或265Sg的原因,因為兩者均能夠衰變為進行裂變的鑪同位素。
對數據的重新評估指出,確實存在兩種同核異構體。一種的主要衰變能量為8.85 MeV,半衰期為8.9秒;第二種衰變能量為8.70 MeV,半衰期為16.2秒。
- 263Sg
成功合成263Sg的反應產生了一條能量為9.06 MeV的α線。[49]在觀察271gDs、271mDs和267Hs衰變產生的263Sg之後,研究人員證實了以9.25 MeV的α放射進行衰變的同核異構體。同時9.06 MeV的衰變也被證實了,並指向半衰期為0.3秒的基態。9.25 MeV的活動指向半衰期為0.9秒的同核異構能級。
最近合成271g,mDs的數據當中有關267Hs衰變的結果存在怪異之處。其中一次衰變中,267Hs衰變為263Sg,再進行α衰變,半衰期約為6秒。該活動仍沒有確切的同核異構體源頭,要得出結論就需要更多的研究。
- 261Sg的衰變光譜圖
撤回的同位素
[編輯]- 269Sg
1999年聲稱合成293Uuo時,同位素269Sg被辨認為其一衰變產物。它以α放射進行衰變,半衰期為22秒。這次發現在2001年被撤回。[o]該同位素最終於2010年成功被合成。
注釋
[編輯]- ^ 由於數據不足,目前無法確定𨭎最穩定的同位素。267Sg半衰期的68%置信區間為+11.3
−4.5 分鐘 9.8[1],而269Sg的則為5±2分鐘[2],兩者重疊。 - ^ 99號元素鎄和100號元素鐨被提議分別以當時仍在世的阿爾伯特·愛因斯坦和恩里科·費米的名字命名,但命名直到他們逝世後才被公布。[7]
- ^ 在核物理學中,原子序高的元素可稱為重元素,如82號元素鉛。超重元素通常指原子序大於103(也有大於100[9]或112[10]的定義)的元素。有定義認為超重元素等同於錒系後元素,因此認為還未發現的超錒系元素不是超重元素。[11]
- ^ 2009年,由尤里·奧加涅相引領的團隊發表了他們嘗試通過對稱的136Xe + 136Xe反應合成𨭆的結果。他們未能在這個反應中觀察到單個原子,因此設置截面,即發生核反應的概率的上限為2.5 pb。[12]作為比較,發現𨭆的反應208Pb + 58Fe的截面為19+19
-11 pb。[13] - ^ 施加到粒子束以加速它的能量也會影響截面。舉個例子,在28
14Si
+ 1
0n
→ 28
13Al
+ 1
1p
反應中,截面會從12.3 MeV的370 mb變化成18.3 MeV的160 mb,最高值是13.5 MeV的380 mb。[17] - ^ 這個值也是普遍接受的複合原子核壽命上限。[21]
- ^ 分離基於產生的原子核會比未反應的粒子束更慢地通過目標這一點。分離器中包含電場和磁場,它們對運動粒子的影響會因粒子的特定速度而被抵消。[23]飛行時間質譜法和反衝能量的測量也有助於分離,兩者結合可以估計原子核的質量。[24]
- ^ 不是所有放射性衰變都是因為靜電排斥力導致的,β衰變便是弱核力導致的。[30]
- ^ 早在1960年代,人們就已經知道原子核的基態在能量和形狀上的不同,也知道核子數為幻數時,原子核就會更穩定。然而,當時人們假設超重元素的原子核因為過於畸形,無法形成核子結構。[34]
- ^ 超重元素的原子核的質量通常無法直接測量,所以是根據另一個原子核的質量間接計算得出的。[39]2018年,勞倫斯伯克利國家實驗室首次直接測量了超重原子核的質量,[40]它的質量是根據轉移後原子核的位置確定的(位置有助於確定其軌跡,這與原子核的質荷比有關,因為轉移是在有磁鐵的情況下完成的)。[41]
- ^ 如果在真空中發生衰變,那麼由於孤立系統在衰變前後的總動量必須保持守恆,衰變產物也將獲得很小的速度。這兩個速度的比值以及相應的動能比值與兩個質量的比值成反比。衰變能量等於α粒子和衰變產物的已知動能之和。[31]這些計算也適用於實驗,但不同之處在於原子核在衰變後不會移動,因為它與探測器相連。
- ^ 自發裂變由蘇聯科學家格奧爾基·弗廖羅夫發現,[42]而他也是杜布納聯合原子核研究所的科學家,所以自發裂變就成了杜布納聯合原子核研究所經常討論的課題。[43]勞倫斯伯克利國家實驗室的科學家認為自發裂變的信息不足以聲稱合成元素,他們認為對自發裂變的研究還不夠充分,無法將其用於識別新元素,因為很難確定複合原子核是不是僅噴射中子,而不是質子或α粒子等帶電粒子。[21]因此,他們更喜歡通過連續的α衰變將新的同位素與已知的同位素聯繫起來。[42]
- ^ 舉個例子,1957年,瑞典斯德哥爾摩省斯德哥爾摩的諾貝爾物理研究所錯誤鑑定102號元素。[44]早先沒有關於該元素發現的明確聲明,所以瑞典、美國、英國發現者將其命名為nobelium。後來證明該鑑定是錯誤的。[45]次年,勞倫斯伯克利國家實驗室無法重現瑞典的結果。他們宣布合成了該元素,但後來也被駁回。[45]杜布納聯合原子核研究所堅持認為他們第一個發現該元素,並建議把新元素命名為joliotium,[46]而這個名稱也沒有被接受(他們後來認為102號元素的命名是倉促的)。[47]由於nobelium這個名稱在三十年間已被廣泛使用,因此沒有更名。[48]
- ^ 不同的來源會給出不同的數值,所以這裡列出最新的數值。
- ^ 見Og
參考資料
[編輯]- ^ 1.0 1.1 1.2 1.3 Oganessian, Yu. Ts.; Utyonkov, V. K.; et al. Synthesis and decay properties of isotopes of element 110: 273Ds and 275Ds. Physical Review C. 2024-05-06, 109 (5). ISSN 2469-9985. doi:10.1103/PhysRevC.109.054307.
- ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear properties (PDF). Chinese Physics C. 2021, 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ 3.0 3.1 3.2 3.3 3.4 3.5 Haire, Richard G. Transactinides and the future elements. Morss; Edelstein, Norman M.; Fuger, Jean (編). The Chemistry of the Actinide and Transactinide Elements 3rd. Dordrecht, The Netherlands: Springer Science+Business Media. 2006. ISBN 1-4020-3555-1.
- ^ Chemical Data. Seaborgium - Sg (頁面存檔備份,存於網際網路檔案館), Royal Chemical Society
- ^ 5.0 5.1 Haba, H.; Kaji, D.; Kudou, Y.; Morimoto, K.; Morita, K.; Ozeki, K.; Sakai, R.; Sumita, T.; Yoneda, A.; Kasamatsu, Y.; Komori, Y.; Shinohara, A.; Kikunaga, H.; Kudo, H.; Nishio, K.; Ooe, K.; Sato, N.; Tsukada, K. Production of 265Sg in the 248Cm(22Ne,5n)265Sg reaction and decay properties of two isomeric states in 265Sg. Physical Review C (American Physical Society (APS)). 2012-02-21, 85 (2). ISSN 0556-2813. doi:10.1103/physrevc.85.024611.
- ^ 6.0 6.1 Oganessian, Yu. Ts.; Utyonkov, V. K.; Ibadullayev, D.; et al. Investigation of 48Ca-induced reactions with 242Pu and 238U targets at the JINR Superheavy Element Factory. Physical Review C. 2022, 106 (24612). S2CID 251759318. doi:10.1103/PhysRevC.106.024612.
- ^ Hoffman, Ghiorso & Seaborg 2000,第187–189頁.
- ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al , 編. Comparing Experimental and Theoretical Quasifission Mass Angle Distributions. European Physical Journal Web of Conferences. 2015, 86: 00061. ISSN 2100-014X. doi:10.1051/epjconf/20158600061 .
- ^ Krämer, K. Explainer: superheavy elements. Chemistry World. 2016 [2020-03-15]. (原始內容存檔於2021-05-15) (英語).
- ^ Discovery of Elements 113 and 115. Lawrence Livermore National Laboratory. [2020-03-15]. (原始內容存檔於2015-09-11).
- ^ Eliav, E.; Kaldor, U.; Borschevsky, A. Electronic Structure of the Transactinide Atoms. Scott, R. A. (編). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons: 1–16. 2018. ISBN 978-1-119-95143-8. doi:10.1002/9781119951438.eibc2632 (英語).
- ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe. Physical Review C. 2009, 79 (2): 024608. ISSN 0556-2813. doi:10.1103/PhysRevC.79.024608 (英語).
- ^ Münzenberg, G.; Armbruster, P.; Folger, H.; et al. The identification of element 108 (PDF). Zeitschrift für Physik A. 1984, 317 (2): 235–236 [20 October 2012]. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. (原始內容 (PDF)存檔於7 June 2015).
- ^ Subramanian, S. Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist. Bloomberg Businessweek. [2020-01-18]. (原始內容存檔於2019-12-11).
- ^ 15.0 15.1 15.2 15.3 15.4 15.5 Ivanov, D. Сверхтяжелые шаги в неизвестное [Superheavy steps into the unknown]. nplus1.ru. 2019 [2020-02-02]. (原始內容存檔於2020-04-23) (俄語).
- ^ Hinde, D. Something new and superheavy at the periodic table. The Conversation. 2017 [2020-01-30]. (原始內容存檔於2020-03-17) (英語).
- ^ Kern, B. D.; Thompson, W. E.; Ferguson, J. M. Cross sections for some (n, p) and (n, α) reactions. Nuclear Physics. 1959, 10: 226–234. doi:10.1016/0029-5582(59)90211-1 (英語).
- ^ Nuclear Reactions (PDF): 7–8. [2020-01-27]. (原始內容存檔 (PDF)於2020-11-30). Published as Loveland, W. D.; Morrissey, D. J.; Seaborg, G. T. Nuclear Reactions. Modern Nuclear Chemistry. John Wiley & Sons, Inc. 2005: 249–297. ISBN 978-0-471-76862-3. doi:10.1002/0471768626.ch10 (英語).
- ^ 19.0 19.1 Krása, A. Neutron Sources for ADS. Faculty of Nuclear Sciences and Physical Engineering (Czech Technical University in Prague). 2010: 4–8. S2CID 28796927.
- ^ Wapstra, A. H. Criteria that must be satisfied for the discovery of a new chemical element to be recognized (PDF). Pure and Applied Chemistry. 1991, 63 (6): 883 [2021-11-28]. ISSN 1365-3075. doi:10.1351/pac199163060879. (原始內容存檔 (PDF)於2021-10-11) (英語).
- ^ 21.0 21.1 Hyde, E. K.; Hoffman, D. C.; Keller, O. L. A History and Analysis of the Discovery of Elements 104 and 105. Radiochimica Acta. 1987, 42 (2): 67–68 [2021-11-27]. ISSN 2193-3405. doi:10.1524/ract.1987.42.2.57. (原始內容存檔於2021-11-27).
- ^ 22.0 22.1 22.2 22.3 Chemistry World. How to Make Superheavy Elements and Finish the Periodic Table [Video]. Scientific American. 2016 [2020-01-27]. (原始內容存檔於2020-04-21) (英語).
- ^ Hoffman, Ghiorso & Seaborg 2000,第334頁.
- ^ Hoffman, Ghiorso & Seaborg 2000,第335頁.
- ^ Zagrebaev, V.; Karpov, A.; Greiner, W. Future of superheavy element research: Which nuclei could be synthesized within the next few years?. Journal of Physics: Conference Series. 2013, 420: 3. ISSN 1742-6588. doi:10.1088/1742-6596/420/1/012001 .
- ^ Beiser 2003,第432頁.
- ^ 27.0 27.1 Pauli, N. Alpha decay (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. 2019 [2020-02-16]. (原始內容存檔 (PDF)於2021-11-28).
- ^ 28.0 28.1 28.2 28.3 28.4 Pauli, N. Nuclear fission (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. 2019 [2020-02-16]. (原始內容存檔 (PDF)於2021-10-21).
- ^ Staszczak, A.; Baran, A.; Nazarewicz, W. Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory. Physical Review C. 2013, 87 (2): 024320–1. ISSN 0556-2813. doi:10.1103/physrevc.87.024320 .
- ^ Beiser 2003,第439頁.
- ^ 31.0 31.1 Beiser 2003,第433頁.
- ^ Aksenov, N. V.; Steinegger, P.; Abdullin, F. Sh.; et al. On the volatility of nihonium (Nh, Z = 113). The European Physical Journal A. 2017, 53 (7): 158. ISSN 1434-6001. doi:10.1140/epja/i2017-12348-8 (英語).
- ^ Beiser 2003,第432–433頁.
- ^ 34.0 34.1 34.2 Oganessian, Yu. Nuclei in the "Island of Stability" of Superheavy Elements. Journal of Physics: Conference Series. 2012, 337: 012005–1–012005–6. ISSN 1742-6596. doi:10.1088/1742-6596/337/1/012005 .
- ^ Moller, P.; Nix, J. R. Fission properties of the heaviest elements (PDF). Dai 2 Kai Hadoron Tataikei no Simulation Symposium, Tokai-mura, Ibaraki, Japan. University of North Texas. 1994 [2020-02-16]. (原始內容存檔 (PDF)於2021-11-01).
- ^ 36.0 36.1 Oganessian, Yu. Ts. Superheavy elements. Physics World. 2004, 17 (7): 25–29 [2020-02-16]. doi:10.1088/2058-7058/17/7/31. (原始內容存檔於2021-11-28).
- ^ Schädel, M. Chemistry of the superheavy elements. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015, 373 (2037): 20140191. ISSN 1364-503X. PMID 25666065. doi:10.1098/rsta.2014.0191 (英語).
- ^ Hulet, E. K. Biomodal spontaneous fission. 50th Anniversary of Nuclear Fission, Leningrad, USSR. 1989. Bibcode:1989nufi.rept...16H.
- ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. A beachhead on the island of stability. Physics Today. 2015, 68 (8): 32–38 [2021-11-28]. ISSN 0031-9228. OSTI 1337838. doi:10.1063/PT.3.2880. (原始內容存檔於2021-11-28) (英語).
- ^ Grant, A. Weighing the heaviest elements. Physics Today. 2018. doi:10.1063/PT.6.1.20181113a (英語).
- ^ Howes, L. Exploring the superheavy elements at the end of the periodic table. Chemical & Engineering News. 2019 [2020-01-27]. (原始內容存檔於2021-11-28) (英語).
- ^ 42.0 42.1 Robinson, A. E. The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War. Distillations. 2019 [2020-02-22]. (原始內容存檔於2021-11-28) (英語).
- ^ Популярная библиотека химических элементов. Сиборгий (экавольфрам) [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru. [2020-01-07]. (原始內容存檔於2011-08-23) (俄語). Reprinted from Экавольфрам [Eka-tungsten]. Популярная библиотека химических элементов. Серебро — Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond]. Nauka. 1977 (俄語).
- ^ Nobelium - Element information, properties and uses | Periodic Table. Royal Society of Chemistry. [2020-03-01]. (原始內容存檔於2021-03-08) (英語).
- ^ 45.0 45.1 Kragh 2018,第38–39頁.
- ^ Kragh 2018,第40頁.
- ^ Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group (PDF). Pure and Applied Chemistry. 1993, 65 (8): 1815–1824 [2016-09-07]. doi:10.1351/pac199365081815. (原始內容存檔 (PDF)於2013-11-25) (英語).
- ^ Commission on Nomenclature of Inorganic Chemistry. Names and symbols of transfermium elements (IUPAC Recommendations 1997) (PDF). Pure and Applied Chemistry. 1997, 69 (12): 2471–2474 [2021-11-28]. doi:10.1351/pac199769122471. (原始內容存檔 (PDF)於2021-10-11) (英語).
- ^ 49.0 49.1 Ghiorso, A., Nitschke, J. M., Alonso, J. R., Alonso, C. T., Nurmia, M., Seaborg, G. T., Hulet, E. K., Lougheed, R. W. Element 106. Phys. Rev. Lett. 1974, 33 (25): 1490–1493. Bibcode:1974PhRvL..33.1490G. doi:10.1103/PhysRevLett.33.1490.
- ^ Names and symbols of transfermium elements (IUPAC Recommendations 1994). Pure and Applied Chemistry. 1994, 66 (12): 2419. doi:10.1351/pac199466122419.
- ^ Names and symbols of transfermium elements (IUPAC Recommendations 1997). Pure and Applied Chemistry. 1997, 69 (12): 2471. doi:10.1351/pac199769122471.
- ^ 中國化學會無機化學名詞小組修訂. 无机化学命名原则 : 1980, 统一书号:13031·2078. 1982-12: 4-5 [2020-11-10]. (原始內容存檔於2021-09-22).
- ^ 劉路沙. 101—109号元素有了中文定名. 光明網. 光明日報. [2020-11-10]. (原始內容存檔於2020-11-10).
- ^ 貴州地勘局情報室摘於《中國地質礦產報》(1998年8月13日). 101~109号化学元素正式定名. 貴州地質. 1998, 15: 298–298 [2020-11-10]. (原始內容存檔於2020-12-03).
- ^ Huebener; Taut, S.; Vahle, A.; Dressler, R.; Eichler, B.; Gäggeler, H. W.; Jost, D.T.; Piguet, D.; Türler, A.; et al. Physico-chemical characterization of seaborgium as oxide hydroxide (PDF). Radiochim. Acta. 2001, 89 (11–12_2001): 737–741 [2013-01-13]. doi:10.1524/ract.2001.89.11-12.737. (原始內容 (PDF)存檔於2014-10-25).
- ^ Even, J.; Yakushev, A.; Dullmann, C. E.; et al. (2014). "Synthesis and detection of a seaborgium carbonyl complex". Science. 345 (6203): 1491. doi:10.1126/science.1255720. PMID 25237098.
- ^ Antalic, S.; Heßberger, F. P.; Ackermann, D.; Heinz, S.; Hofmann, S.; Kindler, B.; Khuyagbaatar, J.; Lommel, B.; Mann, R. Nuclear isomers in 259Sg and 255Rf. The European Physical Journal A. 14 April 2015, 51 (4): 41 [2 July 2023]. Bibcode:2015EPJA...51...41A. ISSN 1434-601X. S2CID 254117522. doi:10.1140/epja/i2015-15041-0. (原始內容存檔於2024-02-08) (英語).
- ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Shumeiko, M. V.; et al. New isotope 276Ds and its decay products 272Hs and 268Sg from the 232Th + 48Ca reaction. Physical Review C. 2023, 108 (024611). doi:10.1103/PhysRevC.108.024611.
參考書目
[編輯]- Beiser, A. Concepts of modern physics 6th. McGraw-Hill. 2003. ISBN 978-0-07-244848-1. OCLC 48965418.
- Hoffman, D. C.; Ghiorso, A.; Seaborg, G. T. The Transuranium People: The Inside Story. World Scientific. 2000. ISBN 978-1-78-326244-1.
- Kragh, H. From Transuranic to Superheavy Elements: A Story of Dispute and Creation. Springer. 2018. ISBN 978-3-319-75813-8.
外部連結
[編輯]- 元素𨭎在洛斯阿拉莫斯國家實驗室的介紹(英文)
- EnvironmentalChemistry.com —— 𨭎(英文)
- 元素𨭎在The Periodic Table of Videos(諾丁漢大學)的介紹(英文)
- 元素𨭎在Peter van der Krogt elements site的介紹(英文)
- WebElements.com – 𨭎(英文)
- Chemistry in its element podcast (MP3) from the Royal Society of Chemistry's Chemistry World: Seaborgium(頁面存檔備份,存於網際網路檔案館)