提示 :此条目的主题不是
士的数 。
第
n
{\displaystyle n}
个的士数 (Taxicab number ),一般写作
Ta
(
n
)
{\displaystyle \operatorname {Ta} (n)}
或
Taxicab
(
n
)
{\displaystyle \operatorname {Taxicab} (n)}
,定义为最小的数能以
n
{\displaystyle n}
个不同的方法表示成两个正 立方数 之和。1938年,G·H·哈代 与爱德华·梅特兰·赖特 证明对于所有正整数
n
{\displaystyle n}
这样的数也存在。可是他们的证明对找寻的士数毫无帮助,截止现时,只找到6个的士数( A011541 ):
Ta
(
1
)
=
2
=
1
3
+
1
3
{\displaystyle {\begin{aligned}\operatorname {Ta} (1)=2&=1^{3}+1^{3}\end{aligned}}}
Ta
(
2
)
=
1729
=
1
3
+
12
3
=
9
3
+
10
3
{\displaystyle {\begin{aligned}\operatorname {Ta} (2)=1729&=1^{3}+12^{3}\\&=9^{3}+10^{3}\end{aligned}}}
Ta
(
3
)
=
87539319
=
167
3
+
436
3
=
228
3
+
423
3
=
255
3
+
414
3
{\displaystyle {\begin{aligned}\operatorname {Ta} (3)=87539319&=167^{3}+436^{3}\\&=228^{3}+423^{3}\\&=255^{3}+414^{3}\end{aligned}}}
Ta
(
4
)
=
6963472309248
=
2421
3
+
19083
3
=
5436
3
+
18948
3
=
10200
3
+
18072
3
=
13322
3
+
16630
3
{\displaystyle {\begin{aligned}\operatorname {Ta} (4)=6963472309248&=2421^{3}+19083^{3}\\&=5436^{3}+18948^{3}\\&=10200^{3}+18072^{3}\\&=13322^{3}+16630^{3}\end{aligned}}}
Ta
(
5
)
=
48988659276962496
=
38787
3
+
365757
3
=
107839
3
+
362753
3
=
205292
3
+
342952
3
=
221424
3
+
336588
3
=
231518
3
+
331954
3
{\displaystyle {\begin{aligned}\operatorname {Ta} (5)=48988659276962496&=38787^{3}+365757^{3}\\&=107839^{3}+362753^{3}\\&=205292^{3}+342952^{3}\\&=221424^{3}+336588^{3}\\&=231518^{3}+331954^{3}\end{aligned}}}
Ta
(
6
)
=
24153319581254312065344
=
582162
3
+
28906206
3
=
3064173
3
+
28894803
3
=
8519281
3
+
28657487
3
=
16218068
3
+
27093208
3
=
17492496
3
+
26590452
3
=
18289922
3
+
26224366
3
{\displaystyle {\begin{aligned}\operatorname {Ta} (6)=24153319581254312065344&=582162^{3}+28906206^{3}\\&=3064173^{3}+28894803^{3}\\&=8519281^{3}+28657487^{3}\\&=16218068^{3}+27093208^{3}\\&=17492496^{3}+26590452^{3}\\&=18289922^{3}+26224366^{3}\end{aligned}}}
Ta
(
2
)
{\displaystyle \operatorname {Ta} (2)}
因为哈代和拉马努金 的故事而为人所知:
“
拉马努金病重,哈代前往探望。哈代说:“我乘的士来,车牌号码是
1729
{\displaystyle 1729}
,这数真没趣,希望不是不祥之兆。”拉马努金答道:“不,那是个有趣得很的数。可以用两个立方之和来表达而且有两种表达方式的数之中,
1729
{\displaystyle \color {blue}{1729}}
是最小的。”(即
1729
=
1
3
+
12
3
=
9
3
+
10
3
{\displaystyle 1729=1^{3}+12^{3}=9^{3}+10^{3}}
,后来这类数称为的士数 。)利特尔伍德回应这宗轶闻说:“每个整数都是拉马努金的朋友。”
”
在
Ta
(
2
)
{\displaystyle \operatorname {Ta} (2)}
之后,所有的的士数均用电脑 来寻找。
David W. Wilson 证明了
Ta
(
6
)
≤
8230545258248091551205888
{\displaystyle \operatorname {Ta} (6)\leq 8230545258248091551205888}
。
1998年丹尼尔·朱利阿斯·伯恩斯坦 证实
391909274215699968
≥
Ta
(
6
)
≥
10
18
{\displaystyle 391909274215699968\geq \operatorname {Ta} (6)\geq 10^{18}}
2002年Randall L. Rathbun 证明
Ta
(
6
)
≤
24153319581254312065344
{\displaystyle \operatorname {Ta} (6)\leq 24153319581254312065344}
2003年5月,Stuart Gascoigne 确定
Ta
(
6
)
>
6.8
×
10
19
{\displaystyle \operatorname {Ta} (6)>6.8\times 10^{19}}
,且Cristian S. Calude 、Elena Calude 及Michael J. Dinneen 显示
Ta
(
6
)
=
24153319581254312065344
{\displaystyle \operatorname {Ta} (6)=24153319581254312065344}
的机会大于99%。
G. H. Hardy和E. M. Wright, An Introduction to the Theory of Numbers , 3rd ed., Oxford University Press, London & NY, 1954, Thm. 412.
J. Leech, Some Solutions of Diophantine Equations , Proc. Cambridge Phil. Soc. 53, 778-780, 1957.
E. Rosenstiel, J. A. Dardis and C. R. Rosenstiel, The four least solutions in distinct positive integers of the Diophantine equation s = x3 + y3 = z3 + w3 = u3 + v3 = m3 + n3 , Bull. Inst. Math. Appl., 27(1991) 155-157; MR 92i:11134, online (页面存档备份 ,存于互联网档案馆 )
David W. Wilson, The Fifth Taxicab Number is 48988659276962496 , Journal of Integer Sequences, Vol. 2 (1999), online (页面存档备份 ,存于互联网档案馆 )
D. J. Bernstein, Enumerating solutions to p(a) + q(b) = r(c) + s(d) , Mathematics of Computation 70, 233 (2000), 389—394.
C. S. Calude, E. Calude and M. J. Dinneen: What is the value of Taxicab(6)? , Journal of Universal Computer Science, Vol. 9 (2003), p. 1196-1203