跳至內容

熱敏電阻

維基百科,自由的百科全書
熱敏電阻
負溫度係數(NTC)熱敏電阻器,珠型,絕緣電線
類型被動元件
工作原理電阻
電路符號

熱敏電阻(英語:thermistor)是一種傳感器電阻,電阻值隨著溫度的變化而改變,且體積隨溫度的變化較一般的固定電阻要大很多。熱敏電阻的英文「thermistor」是由Thermal(熱)及resistor(電阻)兩詞組成的混成詞。熱敏電阻屬可變電阻的一類,廣泛應用於各種電子元件中,例如湧浪電流限制器溫度傳感器可復式保險絲、及自動調節的加熱器等。

不同於電阻溫度計使用純金屬,在熱敏電阻器中使用的材料通常是陶瓷聚合物。兩者也有不同的溫度響應性質,電阻溫度計適用於較大的溫度範圍;而熱敏電阻通常在有限的溫度範圍內實現較高的精度,通常是-90℃〜130℃。[1]

基本特性

[編輯]

熱敏電阻最基本的特性是其阻值隨溫度的變化有極為顯著的變化,以及伏安曲線呈非線性。若電子和空穴的濃度分別為,遷移率分別為,則半導體的電導為:

  

因為都是依賴溫度T的函數,所以電導是溫度的函數,因此可由測量電導而推算出溫度的高低,並能做出電阻-溫度特性曲線。這就是半導體熱敏電阻的工作原理。

假設,電阻和溫度之間的關係是線性的,則:

= 電阻變化
= 溫度變化
= 一階的電阻溫度係數

熱敏電阻可以依值大致分為兩類:

  • 為正值,電阻隨溫度上昇而增加,稱為正溫度係數PTCPositive Temperature Coefficient)熱敏電阻。
  • 為負值,電阻隨溫度上昇而減少,稱為負溫度係數NTCNegative Temperature Coefficient)熱敏電阻。

此外還有一種臨界溫度熱敏電阻(CTRCritical Temperature Resistance),在一定溫度範圍內,其電阻會有大幅的變化[2]

非熱敏電阻的一般電阻,其一般都相當接近零,因此在一定的溫度範圍內其電阻值可以接近一定值。

有時熱敏電阻不用溫度係數k來描述,而是用電阻溫度係數來描述,其定義為[3]

此處的係數和以下的參數是不同的。

斯坦哈特-哈特公式

[編輯]

在實務上,上述的線性近似只在很小溫度範圍下適用,若要考慮精密的溫度量測,需要更詳細的描述溫度-電阻曲線。斯坦哈特-哈特公式英語Steinhart–Hart equation是廣為使用的三階近似式:

其中abc稱為斯坦哈特-哈特參數,每個熱敏電阻有不同的參數,T是以開爾文表示的溫度,R是電阻,單位是歐姆,若要電阻以溫度的函數表示,可以整理為下式:

其中

在二百度的範圍內,斯坦哈特-哈特公式的誤差多半小於0.02 °C[4]。例如,室溫下(25 °C = 298.15 K)電阻值為3000 Ω的熱敏電阻,其參數為

NTC熱敏電阻的參數

[編輯]

NTC熱敏電阻的電阻值隨溫度的上昇而下降,也可以用B(或β)參數來描述其特性,其實就是參數為, 斯坦哈特-哈特公式英語Steinhart–Hart equation

其中

  • T:溫度,單位為K
  • R0:為溫度T0 (25 °C = 298.15 K)時的電阻

求解R可得

或者

其中.

因此可以求解溫度為

B參數的方程也可以表示為,可以得熱敏電阻溫度及電阻的方程式轉換為的線性方程式。由其平均斜率可以得到B參數的估計值。

歷史

[編輯]

第一個NTC熱敏電阻是法拉第在1833年研究硫化銀的半導體特性時發現的。法拉第注意到硫化銀的阻值隨著溫度上昇而大幅下降(這也是第一次對於半導體材料特性的記錄) [5]

早期因為熱敏電阻不易生產,且應用的技術受限,商業化的使用一直到1930年代才開始[6]。第一個在商業應用上可行的熱敏電阻是由Samuel Ruben在1930年發明[7]

應用領域

[編輯]
  • 溫度偵測
  • 電路開關
  • 湧流抑制
  • 馬達延時啟動
  • 過熱保護

相關條目

[編輯]

參考文獻

[編輯]
  1. ^ "NTC Thermistors"頁面存檔備份,存於網際網路檔案館). Micro-chip Technologies. 2010.
  2. ^ 李宏. 神奇的新材料(海洋与科技探索之旅). 青蘋果數據中心. 11 December 2013: 167–. GGKEY:JUBFQGAWFWC. 
  3. ^ Thermistor Terminology頁面存檔備份,存於網際網路檔案館). U.S. Sensor
  4. ^ "Practical Temperature Measurements" 網際網路檔案館存檔,存檔日期2009-08-24.. Agilent Application Note. Agilent Semiconductor.
  5. ^ 1833 - First Semiconductor Effect is Recorded. Computer History Museum. [24 June 2014]. (原始內容存檔於2015-12-21). 
  6. ^ McGee, Thomas. Chapter 9. Principles and Methods of Temperature Measurement. John Wiley & Sons. 1988: 203 [2015-01-04]. (原始內容存檔於2020-09-13). 
  7. ^ Jones, Deric P. (編). Biomedical Sensors. Momentum Press. 2009: 12 [2015-01-04]. (原始內容存檔於2020-06-15). 

外部連結

[編輯]