龐加萊復現定理
物理學上,龐加萊復現定理[1](英語:Poincaré recurrence theorem,又譯為龐加萊回復定理或龐加萊回歸定理[2][3][4])斷言,對於某類系統而言,只要經過充分長但有限的時間,一定會到達某個與初始態任意接近的狀態(若該系統具連續的狀態),或者一定返回初始態本身(若該系統離散)。
龐加萊復現時間是復現前經過的時長。對於不同的初始態和不同的要求接近的程度,此時間亦不同。定理僅適用於滿足某些條件的孤立力學系統,例如該系統所有粒子都必須約束在某個有限體積的範圍內。定理可以放在遍歷理論、動態系統,或者統計力學的背景中討論。適用此定理的系統稱為守恆系統(與耗散系統相對)。
定理得名自亨利·龐加萊,其於1890年討論過此定理[5][6]。1919年,康斯坦丁·卡拉西奧多里利用測度論證明了此定理。[7][8]
嚴謹敍述
[編輯]對於任何一個由常微分方程式定義的動態系統,都有相應的流映射 f t,而對每個固定的 t(可當成時間), f t 皆是由該系統的相空間射去相空間本身的映射。若相空間中,每個可以計算體積(稱為相體積)的子集,都在流中保持體積,則稱該系統保體積。例如,根據劉維爾定理,所有哈密頓系統皆保體積。
有了上述的背景之後,可以將定理敍述如下:若流保體積,且其所有軌道皆有界,則對於相空間中每個開集,都有軌道與之相交無窮多次。[9]
證明討論
[編輯]定性理解,證明的關鍵在於兩個前提:[10]
- 可達(accessible)的相空間總體積具有有限的上界。對於力學系統,可要求其受限於某個有界的「實際」空間(於是,該系統不得將粒子射出至極遠處而從不返回)。如此,再加上能量守恆,就足以證明系統受限於相空間的某個有限區域。
- 動態變化當中,有限元的相體積守恆。(對於力學系統,此條件由劉維爾定理保證。)
取相空間中任意一塊體積有限的起始區域,其按照系統的動態而移動,「掃過」相空間的一部分點。由於該區域的體積在過程中保持不變,其掃過的總體積(稱為相管,phase tube)理應隨時間線性增加(至少在起始不久後如此)。然而,由於可達的相空間總體積有限,相管的體積會達到某個飽和值,而不能一直增加,否則終會大於可達的總相體積。這正說明,相管必與自身相交。倘若要與自身相交,則必須先經過起始的區域。所以,起始體積中至少有體積非零的一部分復現(recur)。
此時,考慮起始區域中永不返回的部分。按上段的論證,若該部分的體積非零,則其必有體積非零的部分復現,但若永不返回的部分中,有一部分復現,則後者亦必返回到原始區域內,造成矛盾。所以,起始區域中永不返回的部分體積只能為零,即與起始區域相比是極小。
注意定理(並其證明)並不保證復現的若干性質:
- 仍然可能有若干個特別的始態永不返回起始區域,或是僅返回有限多次後便不再返回。然而,此種情況極為罕見,與起始區域相比僅是無窮小的部分。
- 起始區域的各部分不必同一時間復現。相管首次通過自身時,可能有一部分體積會錯過起始區域,從而該部分會較遲復現。
- 相管確實可能先窮竭可達相空間的全部體積,然後才返回到起始區域。一個簡單例子是諧振子。能夠歷遍整個可達相空間的體積的系統稱為滿足遍歷假設(但此取決於「可達體積」的定義)。
- 可保證的是,從幾乎所有始態出發,系統都終將返回到某個與始態任意接近的態。復現時間取決於所要求的「近」的程度,即初始區域的相體積。若要得出更精確的復現,則須取較小的初始區域,所以所需的復現時間更長。
- 給定某個區域和其中某個相,其復現的時刻不必具周期性。第二次復現的時間不必是首次復現時間的兩倍。
形式敍述
[編輯]設
為總測度有限的測度空間,並設
為保測函數,即其可測,且對任意的可測子集 有 以下為定理的兩種敍述:
定理一
[編輯]對任意可測子集 中滿足:存在正整數 ,使得對任意 都有 的點 的集合的測度為零。
換言之, 中幾乎所有點皆會返回到 且會返回無窮多次,即
證明見於所引參考資料。[11]
定理二
[編輯]以下為定理的拓撲版本:
若 為第二可數的豪斯多夫空間,而 包含其博雷爾σ-代數,則 的復現點集的測度等於 的全測度,即幾乎所有點皆復現。
證明同樣見於所引參考資料。[12]
更一般地,定理適用於守恆系統,而不僅是保測動態系統。
量子力學版本
[編輯]對於非時變的量子力學系統,若其能量特徵態離散,則有類似的定理成立。對於任意的 和 皆存在時間 T 大於 使得 其中 表示系統於時間 t 的態向量。[13][14][15]
證明的關鍵如下。系統的狀態按下式隨時間變化:
其中 為能量特徵值(此處使用自然單位,故約化普朗克常數 ),而 為相應的能量特徵態。時間 和時間 的態向量的距離平方為
可於某項 n = N 截尾,而 N 不取決於 T, 因為
而又有 收斂(此為始態的範數平方),故上式中 取很大時,能使上式的值任意小。
而有限和
按以下的構造,也能藉著揀選特定的時刻 T, 而使之任意小。取任意的 然後取 T, 使得對於 都總存在整數 滿足
對此 T, 有
於是,
亦即態向量 會回到與始態 任意接近之處。
相關條目
[編輯]參考文獻
[編輯]- ^ 庞加莱复现. 術語在線. [2020-10-15].
- ^ 葉向東、邵松. 动力系统中若干回复性问题的新进展 (PDF). 2016-04-19 [2020-10-15]. (原始內容存檔 (PDF)於2020-10-17).
- ^ 王磊傑. 群作用下的Khintchine回归定理. 《文山學院學報》. 2011, 24 (6): 29–31.
- ^ 中國科學院數學與系統科學研究院. 庞加莱对现代数学最重要的影响是创立组合拓扑学. 數字數學博物館. [2020-10-15]. (原始內容存檔於2020-02-17).
- ^ Poincaré, H. Sur le problème des trois corps et les équations de la dynamique [論三體問題及動力學方程]. Acta Math. 1890, 13: 1–270 [2020-10-05]. (原始內容存檔於2020-11-01) (法語).
- ^ Poincaré, Œuvres VII, 262–490 (theorem 1 section 8)
- ^ Carathéodory, C. Über den Wiederkehrsatz von Poincaré [論龐加萊的復現定理]. Berl. Sitzungsber. 1919: 580–584 (德語).
- ^ Carathéodory, Ges. math. Schr. IV, 296–301
- ^ Barreira, Luis. Zambrini, Jean-Claude , 編. Poincaré recurrence: Old and new. XIVth International Congress on Mathematical Physics. World Scientific: 415–422. 2006. ISBN 978-981-256-201-2. doi:10.1142/9789812704016_0039 (英語).
- ^ Gibbs, Josiah Willard. Elementary Principles in Statistical Mechanics [統計力學的基本原理]. New York, NY: Charles Scribner's Sons. 1902. Chapter X (英語).
- ^ proof of Poincaré recurrence theorem 1. PlanetMath.
- ^ proof of Poincaré recurrence theorem 2. PlanetMath.
- ^ Bocchieri, P.; Loinger, A. Quantum Recurrence Theorem. Phys. Rev. 1957, 107 (2): 337–338. Bibcode:1957PhRv..107..337B. doi:10.1103/PhysRev.107.337.
- ^ Percival, I.C. Almost Periodicity and the Quantal H theorem. J. Math. Phys. 1961, 2 (2): 235–239. Bibcode:1961JMP.....2..235P. doi:10.1063/1.1703705.
- ^ Schulman, L. S. Note on the quantum recurrence theorem. Phys. Rev. A. 1978, 18 (5): 2379–2380. Bibcode:1978PhRvA..18.2379S. doi:10.1103/PhysRevA.18.2379.
延伸閱讀
[編輯]- Page, Don N. Information loss in black holes and/or conscious beings?. November 25, 1994. arXiv:hep-th/9411193 .
外部連結
[編輯]- Padilla, Tony. The Longest Time. Numberphile. Brady Haran. [2013-04-08]. (原始內容存檔於2013-11-27).
- Arnold's Cat Map: An interactive graphical illustration of the recurrence theorem of Poincaré. [2020-10-05]. (原始內容存檔於2020-12-23).
本條目含有來自PlanetMath《Poincaré recurrence theorem》的內容,版權遵守創用CC協議:署名-相同方式共享協議。