Нормальное распределение
Нормальное распределение | |
---|---|
Зеленая линия соответствует стандартному нормальному распределению | |
Цвета на этом графике соответствуют графику наверху | |
Обозначение | |
Параметры |
μ — коэффициент сдвига (вещественный) σ > 0 — коэффициент масштаба (вещественный, строго положительный) |
Носитель | |
Плотность вероятности | |
Функция распределения | |
Математическое ожидание | |
Медиана | |
Мода | |
Дисперсия | |
Коэффициент асимметрии | |
Коэффициент эксцесса | |
Дифференциальная энтропия | |
Производящая функция моментов | |
Характеристическая функция |
Норма́льное распределе́ние[1][2], также называемое распределением Гаусса или Гаусса — Лапласа[3] — распределение вероятностей, которое в одномерном случае задаётся функцией плотности вероятности, совпадающей с функцией Гаусса:
- ,
- где параметр — математическое ожидание (среднее значение), медиана и мода распределения, а параметр — среднеквадратическое отклонение, — дисперсия распределения.
Таким образом, одномерное нормальное распределение является двухпараметрическим семейством распределений, которое принадлежит экспоненциальному классу распределений[4]. Многомерный случай описан в статье «Многомерное нормальное распределение».
Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием и стандартным отклонением
Общие сведения
[править | править код]Если величина является суммой многих случайных слабо взаимозависимых величин, каждая из которых вносит малый вклад относительно общей суммы, то центрированное и нормированное распределение такой величины при достаточно большом числе слагаемых стремится к нормальному распределению.
Это следует из центральной предельной теоремы теории вероятностей. В окружающем нас мире часто встречаются величины, значение которых определяется совокупностью многих независимых факторов. Этот факт, а также то, что распределение считалось типичным, обычным, привели к тому, что в конце XIX века стал использоваться термин «нормальное распределение». Нормальное распределение играет заметную роль во многих областях науки, например в математической статистике и статистической физике.
Случайная величина, имеющая нормальное распределение, называется нормальной, или гауссовской, случайной величиной.
Определения
[править | править код]Стандартное нормальное распределение
[править | править код]Наиболее простой случай нормального распределения — стандартное нормальное распределение — частный случай, когда и Его плотность вероятности равна:
Множитель в выражении обеспечивает условие нормировки интеграла [5]. Поскольку множитель в экспоненте обеспечивает дисперсию равную единице, то и стандартное отклонение равно 1. Функция симметрична в точке её значение в ней максимально и равно Точки перегиба функции: и
Гаусс называл стандартным нормальным распределение с то есть:
Нормальное распределение с параметрами
[править | править код]Каждое нормальное распределение — это вариант стандартного нормального распределения, область значений которого растягивается множителем (стандартное отклонение) и переносится на (математическое ожидание):
являются параметрами нормального распределения. Плотность вероятности должна нормироваться так что интеграл равен 1.
Если — стандартная нормальная случайная величина, то величина будет иметь нормальное распределение с математическим ожиданием и стандартным отклонением Наоборот, если — нормальная величина с параметрами и то будет иметь стандартное нормальное распределение.
Если в экспоненте плотности вероятности раскрыть скобки и учитывать, что , то:
Таким образом, плотность вероятности каждого нормального распределения представляет собой экспоненту квадратичной функции:
- где
Отсюда можно выразить среднее значение как а дисперсию как Для стандартного нормального распределения и
Обозначение
[править | править код]Плотность вероятности стандартного нормального распределения (с нулевым средним и единичной дисперсией) часто обозначается греческой буквой (фи)[6]. Также достаточно часто используется альтернативная формы греческой буквы фи .
Нормальное распределение часто обозначается или [7]. Если случайная величина распределена по нормальному закону со средним и вариацией то пишут:
Функция распределения
[править | править код]Функция распределения стандартного нормального распределения обычно обозначается заглавной греческой буквой (фи) и представляет собой интеграл:
С ней связана функция ошибок (интеграл вероятности) дающий вероятность того, что нормальная случайная величина со средним 0 и вариацией 1/2 попадёт в отрезок :
Эти интегралы не выражаются в элементарных функциях и называются специальными функциями. Многие их численные приближения известны. См. ниже.
Функции связаны, в частности, соотношением:
- .
Нормальное распределение с плотностью средним и отклонением имеет следующую функцию распределения:
Можно использовать функцию — она даст вероятность того, что значение стандартной нормальной случайной величины превысит :
- .
График стандартной нормальной функции распределения имеет 2-кратную вращательную симметрию относительно точки (0;1/2), то есть Её неопределенный интеграл равен:
Функция распределения стандартной нормальной случайной величины может быть разложена с помощью метода интегрирования по частям в ряд:
где знак означает двойной факториал.
Асимптотическое разложение функции распределения для больших может быть также произведено интегрированием по частям.
Стандартное отклонение
[править | править код]Около 68 % значений из нормального распределения находятся на расстоянии не более одного стандартного отклонения σ от среднего; около 95 % значений лежат расстоянии не более двух стандартных отклонений; и 99,7 % не более трёх. Этот факт является частным случаем правила 3 сигм для нормальной выборки.
Более точно, вероятность получить нормальное число в интервале между и равна:
С точностью до 12 значащих цифр значения для приведены в таблице[8]:
OEIS | |||||
---|---|---|---|---|---|
1 | 0,682689492137 | 0,317310507863 |
|
A178647 | |
2 | 0,954499736104 | 0,045500263896 |
|
A110894 | |
3 | 0,997300203937 | 0,002699796063 |
|
A270712 | |
4 | 0,999936657516 | 0,000063342484 |
| ||
5 | 0,999999426697 | 0,000000573303 |
| ||
6 | 0,999999998027 | 0,000000001973 |
|
Свойства
[править | править код]Моменты
[править | править код]Моментами и абсолютными моментами случайной величины называются математические ожидания случайных величин и соответственно. Если математическое ожидание случайной величины то эти параметры называются центральными моментами. В большинстве случаев представляют интерес моменты для целых
Если имеет нормальное распределение, то для неё существуют (конечные) моменты при всех с действительной частью больше −1. Для неотрицательных целых центральные моменты таковы:
Здесь — натуральное число, а запись означает двойной факториал числа то есть (поскольку в данном случае нечётно) произведение всех нечётных чисел от 1 до
Центральные абсолютные моменты для неотрицательных целых таковы:
Последняя формула справедлива также для произвольных .
Преобразование Фурье и характеристическая функция
[править | править код]Преобразование Фурье нормальной плотности вероятности с математическим ожиданием стандартным отклонением равно[9]:
- где есть мнимая единица.
Если математическое ожидание то первый множитель равен 1, и преобразование Фурье, с точностью до константы есть нормальная плотность вероятности на частотных интервалах, с математическим ожиданием равным 0 и стандартным отклонением В частности, стандартное нормальное распределение есть собственная функция от преобразования Фурье.
В теории вероятности, преобразование Фурье плотности распределения действительной случайной величины близко связано с характеристической функцией этой величины, которая определена как математическое ожидание от и является функцией вещественной переменной (частотный параметр преобразования Фурье). Определение может быть распространено и на комплексную переменную [10]. Соотношение записывается так:
Бесконечная делимость
[править | править код]Нормальное распределение является бесконечно делимым.
Если случайные величины и независимы и имеют нормальное распределение с математическими ожиданиями и и дисперсиями и соответственно, то также имеет нормальное распределение с математическим ожиданием и дисперсией
Отсюда вытекает, что нормальная случайная величина представима как сумма произвольного числа независимых нормальных случайных величин.
Максимальная энтропия
[править | править код]Нормальное распределение имеет максимальную дифференциальную энтропию среди всех непрерывных распределений, дисперсия которых не превышает заданную величину[11][12].
Правило трёх сигм для гауссовской случайной величины
[править | править код]Правило трёх сигм () — практически все значения нормально распределённой случайной величины лежат в интервале:
- где — математическое ожидание и параметр нормальной случайной величины.
Более точно — приблизительно с вероятностью 0,9973 значение нормально распределённой случайной величины лежит в указанном интервале.
Моделирование нормальных псевдослучайных величин
[править | править код]При компьютерном моделировании, особенно при применении метода Монте-Карло, желательно использовать величины, распределенные по нормальному закону. Многие алгоритмы дают стандартные нормальные величины, так как нормальную величину можно получить как:
- где Z — стандартная нормальная величина.
Алгоритмы также используют различные преобразования равномерных величин. Простейшие приближённые методы моделирования основываются на центральной предельной теореме. Если сложить достаточно большое количество независимых одинаково распределённых величин с конечной дисперсией, то сумма будет иметь распределение, близкое к нормальному. Например, если сложить 100 независимых стандартно равномерно распределённых случайных величин, то распределение суммы будет приближённо нормальным.
Для программного генерирования нормально распределённых псевдослучайных величин предпочтительнее использовать преобразование Бокса — Мюллера. Оно позволяет генерировать одну нормально распределённую величину на базе одной равномерно распределённой.
Также существует алгоритм Зиккурат, который работает даже быстрее преобразования Бокса — Мюллера. Тем не менее, сложнее в реализации, но его применение оправдано в случаях, когда требуется генерирование очень большого числа неравномерно распределённых случайных чисел.
Нормальное распределение в природе и приложениях
[править | править код]Нормальное распределение часто встречается в природе. Например, следующие случайные величины хорошо моделируются нормальным распределением:
- отклонение при стрельбе;
- погрешности измерений (однако погрешности некоторых измерительных приборов имеют иное распределение);
- некоторые характеристики живых организмов в популяции.
Такое широкое распространение этого распределения связано с тем, что оно является бесконечно делимым непрерывным распределением с конечной дисперсией. Поэтому к нему в пределе приближаются некоторые другие, например биномиальное и пуассоновское. Этим распределением моделируются многие недетерминированные физические процессы[13].
Многомерное нормальное распределение используется при исследовании многомерных случайных величин (случайных векторов). Одним из многочисленных примеров таких приложений является исследование параметров личности человека в психологии и психиатрии.
Связь с другими распределениями
[править | править код]- Нормальное распределение является распределением Пирсона типа XI[14].
- Отношение пары независимых стандартных нормально распределенных случайных величин имеет распределение Коши[15]. То есть, если случайная величина представляет собой отношение (где и — независимые стандартные нормальные случайные величины), то она будет обладать распределением Коши.
- Если — совместно независимые стандартные нормальные случайные величины, то есть то случайная величина имеет распределение хи-квадрат с k степенями свободы.
- Если случайная величина подчинена логнормальному распределению, то её натуральный логарифм имеет нормальное распределение. То есть, если то И наоборот, если то
- Если независимые нормально распределенные случайные величины с математическими ожиданиями и дисперсиями то их выборочное среднее независимо от выборочного стандартного отклонения[16], а отношение следующих двух величин будет иметь t-распределение с степенями свободы:
- Если независимые стандартные нормальные случайные величины, то отношение нормированных сумм квадратов будет иметь распределение Фишера с ( ) степенями свободы[17]:
- Отношение квадратов двух стандартных нормальных случайных величин имеет распределение Фишера со степенями свободы
История
[править | править код]Впервые нормальное распределение как предел биномиального распределения при появилось в 1738 году во втором издании работы Муавра «Доктрина случайностей»[англ.][18]. Это было первое доказательство частного случая центральной предельной теоремы. В 1809 году Гаусс в сочинении «Теория движения небесных тел» ввёл это распределение как возникающее в результате многократных измерений движения небесных тел. Однако Гаусс вывел формулу для действительных случайных величин из принципа достижения максимума совместной плотности всех измерений в точке с координатами, равными среднему всех измерений. Этот принцип впоследствии подвергался критике. В 1812 году Лаплас в теореме Муавра — Лапласа обобщил результат Муавра для произвольного биномиального распределения, то есть для сумм одинаково распределённых независимых бинарных величин[3].
См. также
[править | править код]- Аддитивный белый гауссовский шум
- Логнормальное распределение
- Равномерное распределение
- Центральная предельная теорема
- Двумерное нормальное распределение
- Многомерное нормальное распределение
- Распределение хи-квадрат
- Статистический критерий
- Частотное распределение
Примечания
[править | править код]- ↑ Вентцель Е. С. Теория вероятностей. — 10-е изд., стереотипное.. — М.: Academia, 2005. — 576 с. — ISBN 5-7695-2311-5.
- ↑ Ширяев А. Н. Вероятность. — М.: Наука, 1980.
- ↑ 1 2 Математический энциклопедический словарь. — М.: Советская энциклопедия, 1988. — С. 139—140.
- ↑ Wasserman L. All of Statistics. — New York, NY: Springer, 2004. — С. 142. — 433 с. — ISBN 978-1-4419-2322-6.
- ↑ Доказательство см. Гауссов интеграл
- ↑ Halperin, Hartley & Hoel, 1965, item 7.
- ↑ McPherson (1990)
- ↑ Wolfram|Alpha: Computational Knowledge Engine . Wolframalpha.com. Дата обращения: 3 марта 2017.
- ↑ Bryc (1995, p. 23)
- ↑ Bryc (1995, p. 24)
- ↑ Cover, Thomas M.; Thomas, Joy A. Elements of Information Theory. — John Wiley and Sons, 2006. — С. 254.
- ↑ Park, Sung Y.; Bera, Anil K. Maximum Entropy Autoregressive Conditional Heteroskedasticity Model (англ.) // Journal of Econometrics[англ.] : journal. — Elsevier, 2009. — P. 219—230. Архивировано 7 марта 2016 года.
- ↑ Талеб Н. Н. Чёрный лебедь. Под знаком непредсказуемости = The Black Swan: The Impact of the Highly Improbable. — КоЛибри, 2012. — 525 с. — ISBN 978-5-389-00573-0.
- ↑ Королюк, 1985, с. 135.
- ↑ Галкин В. М., Ерофеева Л. Н., Лещева С. В. Оценки параметра распределения Коши // Труды Нижегородского государственного технического университета им. Р. Е. Алексеева. — 2014. — № 2(104). — С. 314—319. — УДК 513.015.2(G).
- ↑ Lukacs, Eugene. A Characterization of the Normal Distribution (англ.) // The Annals of Mathematical Statistics[англ.] : journal. — 1942. — Vol. 13, no. 1. — P. 91—3. — ISSN 0003-4851. — doi:10.1214/aoms/1177731647. — .
- ↑ Lehmann, E. L. Testing Statistical Hypotheses. — 2nd. — Springer[англ.], 1997. — С. 199. — ISBN 978-0-387-94919-2.
- ↑ The doctrine of chances; or, a method of calculating the probability of events in play, L., 1718, 1738, 1756; L., 1967 (репродуцир. изд.); Miscellanea analytica de scriebus et quadraturis, L., 1730.
Литература
[править | править код]- Королюк В. С., Портенко Н. И., Скороход А. В., Турбин А. Ф. Справочник по теории вероятностей и математической статистике. — М.: Наука, 1985. — 640 с.
- Halperin, Max; Hartley, Herman O.; Hoel, Paul G. Recommended Standards for Statistical Symbols and Notation. COPSS Committee on Symbols and Notation (англ.) // The American Statistician[англ.] : journal. — 1965. — Vol. 19, no. 3. — P. 12—14. — doi:10.2307/2681417. — .
- McPherson, Glen. Statistics in Scientific Investigation: Its Basis, Application and Interpretation (англ.). — Springer-Verlag, 1990. — ISBN 978-0-387-97137-7.
- Bryc, Wlodzimierz. The Normal Distribution: Characterizations with Applications (англ.). — Springer-Verlag, 1995. — ISBN 978-0-387-97990-8.
Ссылки
[править | править код]- Таблица значений функции стандартного нормального распределения
- Онлайн расчёт вероятности нормального распределения
В другом языковом разделе есть более полная статья Normal distribution (англ.). |
Для улучшения этой статьи желательно:
|