Поверхность Хеннеберга
Перейти к навигации
Перейти к поиску
Поверхность Хеннеберга — неориентируемая минимальная поверхность[1], названная именем немецкого математика Лебрехта Хенненберга[нем.].
Поверхность имеет параметрические уравнения
и может быть описана как алгебраическая поверхность 15-го порядка[2]. Её можно рассматривать как погружение проколотой проективной плоскости[3]. До 1981 года поверхность была единственной известной неориентируемой минимальной поверхностью[4].
Поверхность содержит полукубическую параболу («параболу Нейла») и может быть получена решением соответствующей задачи Бьёрлинга[англ.][5][6].
Примечания
[править | править код]- ↑ Henneberg, 1875.
- ↑ Weisstein, Eric W. "Henneberg's Minimal Surface." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/HennebergsMinimalSurface.html Архивная копия от 3 февраля 2022 на Wayback Machine
- ↑ Dierkes, Hildebrandt, Sauvigny, 2010.
- ↑ de Oliveira, 1986.
- ↑ Henneberg, 1876, с. 66–70.
- ↑ Fung, 2004.
Литература
[править | править код]- L. Henneberg. Über salche minimalfläche, welche eine vorgeschriebene ebene curve sur geodätishen line haben. — Zürich: Eidgenössisches Polythechikum, 1875. — (Doctoral Dissertation).
- M. Elisa G. G. de Oliveira. Some New Examples of Nonorientable Minimal Surfaces // Proceedings of the American Mathematical Society. — 1986. — Декабрь (т. 98, № 4).
- Ulrich Dierkes, Stefan Hildebrandt, Friedrich Sauvigny. Minimal Surfaces 1. — Springer, 2010. — Т. 339. — (Grundlehren der mathematischen Wissenschaften). — ISBN 978-3-642-11697-1.
- L. Henneberg. Über diejenige minimalfläche, welche die Neil'sche Paralee zur ebenen geodätischen line hat // Vierteljschr Natuforsch, Ges.. — Zürich, 1876. — Вып. 21.
- Kai-Wing Fung. Minimal Surfaces as Isotropic Curves in C3: Associated minimal surfaces and the Björling's problem. — 2004. — (MIT BA Thesis).