Математика

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая 83.220.239.125 (обсуждение) в 18:48, 14 августа 2019 (Краткая история). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску
Евклид. Деталь «Афинской школы» Рафаэля

Матема́тика (др.-греч. μᾰθημᾰτικά[1] < μάθημα «изучение; наука») — наука об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание той или иной математической теории[2]. Исторически сложилась на основе операций подсчёта, измерения и описания формы объектов[3]. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке. Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов. Математика — фундаментальная наука, предоставляющая (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природы[4].

Основные сведения

Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом, либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Таким образом, первоначально исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики[5].

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе было предложено много различных определений математики.

Этимология

Слово «математика» произошло от др.-греч. μάθημα, что означает изучение, знание, наука, и др.-греч. μαθηματικός, первоначально означающего восприимчивый, успевающий[6], позднее относящийся к изучению, впоследствии относящийся к математике. В частности, μαθηματικὴ τέχνη, на латыни ars mathematica, означает искусство математики. Термин др.-греч. μᾰθημᾰτικά в современном значении этого слова «математика» встречается уже в трудах Аристотеля (IV век до н. э.). По мнению Фасмера в русский язык слово пришло либо через пол. matematyka, либо через лат. mathematica[7].

В текстах на русском языке слово «математика» или «маѳематика» встречается, по крайней мере, с XVII века, например, у Николая Спафария в «Книге избранной вкратце о девяти мусах и о седмих свободных художествах» (1672 год)[8]

Определения

Одно из первых определений предмета математики дал Декарт[9]:

К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.

В советское время классическим считалось определение из БСЭ[11]:464, данное А. Н. Колмогоровым:

Математика… наука о количественных отношениях и пространственных формах действительного мира.

Это определение Энгельса[12]; правда, далее Колмогоров поясняет, что все использованные термины надо понимать в самом расширенном и абстрактном смысле[11]:476,477.

Формулировка Бурбаки[2]:

Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм — математических структур.

Герман Вейль пессимистически оценил возможность дать общепринятое определение предмета математики:

Вопрос об основаниях математики и о том, что представляет собой в конечном счёте математика, остаётся открытым. Мы не знаем какого-то направления, которое позволит, в конце концов, найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный «окончательный» ответ будет когда-нибудь получен и признан всеми математиками.

«Математизирование» может остаться одним из проявлений творческой деятельности человека, подобно музицированию или литературному творчеству, ярким и самобытным, но прогнозирование его исторических судеб не поддаётся рационализации и не может быть объективным[13].

Разделы математики

1. Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе и образованную дисциплинами:

и высшую математику, изучаемую на нематематических специальностях вузов. Дисциплины, входящие в состав высшей математики, варьируются в зависимости от специальности.

Программа обучения по специальности математика[14] образована следующими учебными дисциплинами:

2. Математика как специальность научных работников Министерством образования и науки Российской Федерации[15] подразделяется на специальности:

3. Для систематизации научных работ используется раздел «Математика»[16] универсальной десятичной классификации (УДК).

4. Американское математическое общество (AMS) выработало свой стандарт для классификации разделов математики. Он называется Mathematics Subject Classification. Этот стандарт периодически обновляется. Текущая версия — это MSC 2010. Предыдущая версия — MSC 2000.

Обозначения

Поскольку математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений в ней также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также потребностей возникших позднее разделов математики — математического анализа, математической логики, теории множеств и др. Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов.

Краткая история

[[Файл:Cyr8.gif|справа|мини|[[Митмтп Новгороден «Наставление, как человек познать счисление лет». Рукопись. Лист 345 (оборот). Содержит древнерусские числа ]]

Кипу, использовались инками для записи чисел

Академиком А. Н. Колмогоровым предложена такая структура истории математики:

  1. Период зарождения математики, на протяжении которого был накоплен достаточно большой фактический материал;
  2. Период элементарной математики, начинающийся в VIV веках до н. э. и завершающийся в конце XVI века («Запас понятий, с которыми имела дело математика до начала XVII века, составляет и до настоящего времени основу „элементарной математики“, преподаваемой в начальной и средней школе»);
  3. Период математики переменных величин, охватывающий XVIIXVIII века, «который можно условно назвать также периодом „высшей математики“»;
  4. Период современной математики — математики XIXXX века, в ходе которого математикам пришлось «отнестись к процессу расширения предмета математических исследований сознательно, поставив перед собой задачу систематического изучения с достаточно общей точки зрения возможных типов количественных отношений и пространственных форм».
Цифры майя

Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция — числа; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время: дни, сезоны, года. Из элементарного счёта естественным образом начала развиваться арифметика: сложение, вычитание, умножение и деление чисел.

Развитие математики опирается на письменность и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки, не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу. Существовало множество различных систем счисления. Первые известные записи чисел были найдены в папирусе Ахмеса, созданном египтянами Среднего царства. Индская цивилизация разработала современную десятичную систему счисления, включающую концепцию нуля.

Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств матиматика

Философия математики

Цели и методы

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.

Другое направление, наряду с абстрагированием — обобщение. Например, обобщая понятие «пространство» до пространства n-измерений. «Пространство , при является математической выдумкой. Впрочем, весьма гениальной выдумкой, которая помогает математически разбираться в сложных явлениях».[17]

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.

Основания

Вопрос сущности и оснований математики обсуждался со времён Платона. Начиная с XX века наблюдается сравнительное согласие в вопросе, что надлежит считать строгим математическим доказательством, однако отсутствует согласие в понимании того, что в математике считать изначально истинным. Отсюда вытекают разногласия как в вопросах аксиоматики и взаимосвязи отраслей математики, так и в выборе логических систем, которыми следует при доказательствах пользоваться.

Помимо скептического, известны нижеперечисленные подходы к данному вопросу.

Теоретико-множественный подход

Предлагается рассматривать все математические объекты в рамках теории множеств, чаще всего с аксиоматикой Цермело — Френкеля (хотя существует множество других, равносильных ей). Данный подход считается с середины XX века преобладающим, однако в действительности большинство математических работ не ставят задач перевести свои утверждения строго на язык теории множеств, а оперируют понятиями и фактами, установленными в некоторых областях математики. Таким образом, если в теории множеств будет обнаружено противоречие, это не повлечёт за собой обесценивание большинства результатов.

Логицизм

Данный подход предполагает строгую типизацию математических объектов. Многие парадоксы, избегаемые в теории множеств лишь путём специальных уловок, оказываются невозможными в принципе.

Формализм

Данный подход предполагает изучение формальных систем на основе классической логики.

Интуиционизм

Интуиционизм предполагает в основании математики интуиционистскую логику, более ограниченную в средствах доказательства (но, как считается, и более надёжную). Интуиционизм отвергает доказательство от противного, многие неконструктивные доказательства становятся невозможными, а многие проблемы теории множеств — бессмысленными (неформализуемыми).

Конструктивная математика

Конструктивная математика — близкое к интуиционизму течение в математике, изучающее конструктивные построения[прояснить]. Согласно критерию конструктивности — «существовать — значит быть построенным».[18] Критерий конструктивности — более сильное требование, чем критерий непротиворечивости.[19]

Основные темы

Количество

Основной раздел, рассматривающий абстракцию количества — алгебра. Понятие «число» первоначально зародилось из арифметических представлений и относилось к натуральным числам. В дальнейшем оно, с помощью алгебры, было постепенно распространено на целые, рациональные, действительные, комплексные и другие числа.

Натуральные числа
Целые числа
Рациональные числа
Вещественные числа
Комплексные числа Кватернионы

Числа — Натуральные числа — Целые числа — Рациональные числа — Иррациональные числа — Алгебраические числа — Трансцендентные числа — Вещественные числа — Комплексные числа — Гиперкомплексные числа — Кватернионы — Октонионы — Седенионы — Гиперреальные числа — Сюрреальные числа — p-адические числа — Математические постоянные — Названия чисел — Бесконечность — Базы

Преобразования

Явления преобразований и изменений в самом общем виде рассматривает анализ.

Арифметика Дифференциальное и интегральное исчисление Векторный анализ Анализ
Дифференциальные уравнения Динамические системы Теория хаоса

Арифметика — Векторный анализ — Анализ — Теория меры — Дифференциальные уравнения — Динамические системы — Теория хаоса

Структуры

Теория множеств — Линейная алгебра — Общая алгебра (включает, в частности, теорию групп, универсальную алгебру, теорию категорий) — Алгебраическая геометрия — Теория чисел — Топология.

Пространственные отношения

Основы пространственных отношений рассматривает геометрия. Тригонометрия рассматривает свойства тригонометрических функций. Изучением геометрических объектов посредством математического анализа занимается дифференциальная геометрия. Свойства пространств, остающихся неизменными при непрерывных деформациях и само явление непрерывности изучает топология.

Геометрия Тригонометрия Дифференциальная геометрия Топология Фракталы Теория меры

Геометрия — Тригонометрия — Алгебраическая геометрия — Топология — Дифференциальная геометрия — Алгебраическая топология — Линейная алгебра — Фракталы — Теория меры.

Дискретная математика

Дискретная математика включает средства исследования объектов, способных принимать только отдельные (дискретные) значения (то есть объектов, не способных изменяться плавно).[20]

Математическая логика Теория вычислимости Криптография Теория графов

Комбинаторика — Теория множеств — Теория решёток — Математическая логика — Теория вычислимостиКриптография — Теория функциональных систем — Теория графов — Теория алгоритмов — Логические исчисленияИнформатика.

Награды

Самой престижной наградой за достижения в области математики, иногда называемой «Нобелевской премией для математиков», является Филдсовская премия, основанная в 1924 году и присуждаемая каждые четыре года вместе с денежным вознаграждением в размере 15 000 канадских долларов. В 2000 году Математический институт Клэя объявил список из семи математических задач, за решение каждой из которых назначен приз в размере 1 млн долларов США[21].

Коды в системах классификации знаний

Онлайновые сервисы

Существует большое число сайтов, предоставляющих сервис для математических расчётов. Большинство из них англоязычные.[23] Из русскоязычных можно отметить сервис математических запросов поисковой системы Nigma.

Программное обеспечение

Математическое программное обеспечение многогранно:

  • Пакеты, ориентированные на набор математических текстов и на их последующую вёрстку (TeX).
  • Пакеты, ориентированные на решение математических задач, численное моделирование и построение графиков (GNU Octave, Maple, Mathcad, MATLAB, Scilab).
  • Электронные таблицы.
  • Отдельные программы или пакеты программ, активно использующие математические методы (калькуляторы, архиваторы, протоколы шифрования/дешифрования, системы распознавание образов, кодирование аудио и видео).

См. также

Популяризаторы науки

Примечания

  1. μαθηματικα, μαθηματικα перевод. www.classes.ru. Дата обращения: 20 сентября 2017.
  2. 1 2 Бурбаки Н. Архитектура математики. Очерки по истории математики / Перевод И. Г. Башмаковой под ред. К. А. Рыбникова. М.: ИЛ, 1963. С. 32, 258.
  3. "mathematics | Definition & History". Encyclopedia Britannica (англ.). Дата обращения: 20 сентября 2017.
  4. Глава 2. Математика как язык науки. Сибирский открытый университет. Дата обращения: 5 октября 2010. Архивировано из оригинала 2 февраля 2012 года.
  5. Панов В. Ф. Математика древняя и юная. — Изд. 2-е, исправленное. — М.: МГТУ им. Баумана, 2006. — С. 581—582. — 648 с. — ISBN 5-7038-2890-2.
  6. Большой древнегреческий словарь (αω). slovarus.info. Дата обращения: 20 сентября 2017. Архивировано из оригинала 12 февраля 2013 года.
  7. Математика. classes.ru. Дата обращения: 20 сентября 2017.
  8. Словарь русского языка XI—XVII вв. Выпуск 9 / Гл. ред. Ф. П. Филин. — М.: Наука, 1982. — С. 41.
  9. Декарт Р. Правила для руководства ума. М.-Л.: Соцэкгиз, 1936.
  10. René Descartes' Regulae ad directionem ingenii. Nach der Original-Ausgabe von 1701 herausgegeben von Artur Buchenau. — Leipzig, 1907. — P. 13.
  11. 1 2 Математика / А. Н. Колмогоров // Большая Советская Энциклопедия / гл. ред. Б. А. Введенский. — 2-е изд. — М. : Государственное научное издательство «Большая Советская Энциклопедия», 1954. — Т. 26 : Магнитка — Медуза. — С. 464—483. — 300 000 экз.
  12. «Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира» в источнике: Маркс К., Энгельс Ф. Анти-Дюринг // Сочинения. — 2-е изд. — М.: Государственное издательство политической литературы, 1961. — Т. 20. — С. 37. — 130 000 экз.
    Оригинал цитаты (нем.) — "Die reine Mathematik hat zum Gegenstand die Raumformen und Quantitätsverhältnisse der wirklichen Welt" — в источнике: Friedrich Engels. Herrn Eugen Dühring's Umwälzung der Wissenschaft. — Leipzig, 1878. — P. 20.
  13. Герман Вейль // Клайн М. Математика. Утрата определённости. — М.: Мир, 1984. — С. 16. Архивная копия от 12 февраля 2007 на Wayback Machine
  14. Государственный образовательный стандарт высшего профессионального образования. Специальность 01.01.00. «Математика». Квалификация — Математик. Москва, 2000 (Составлено под руководством О. Б. Лупанова)
  15. Номенклатура специальностей научных работников, утверждённая приказом Минобрнауки России от 25.02.2009 № 59
  16. УДК 51 Математика
  17. Я. С. Бугров, С. М. Никольский. Элементы линейной алгебры и аналитической геометрии. М.: Наука, 1988. С. 44.
  18. Н. И. Кондаков. Логический словарь-справочник. М.: Наука, 1975. С. 259.
  19. Г. И. Рузавин. О природе математического знания. — М., 1968.
  20. Renze, John; Weisstein, Eric W. Discrete Mathematics (англ.) на сайте Wolfram MathWorld.
  21. Mathematics Prizes. Wolfram MathWorld. Дата обращения: 7 июля 2019.
  22. Электронная библиотека LibOk.Net - читать онлайн и скачать книги бесплатно. www.gsnti-norms.ru. Дата обращения: 20 сентября 2017. (недоступная ссылка)
  23. Например: http://mathworld.wolfram.com

Литература

Энциклопедии
Справочники
  • А. А. Адамов, А. П. Вилижанин, Н. М. Гюнтер, А. Н. Захаров, В. М. Мелиоранский, В. Ф. Точинский, Я. В. Успенский. Сборник задач по высшей математике преподавателей Института Инженеров Путей Сообщения. — СПб., 1912.
  • Шахно К. У. Справочник по элементарной математике. — Л., 1955.
  • Г. Корн, Т. Корн. Справочник по математике для научных работников и инженеров. — М., 1973.
Книги
Занимательная математика
  • Бобров С. П. Волшебный двурог. — М.: Детская литература, 1967. — 496 с.
  • Дьюдени Г. Э. Кентерберийские головоломки; 200 знаменитых головоломок мира; Пятьсот двадцать головоломок.
  • Кэррол Л. История с узелками; Логическая игра.
  • Таунсенд Чарлз Барри. Звёздные головоломки; Самые весёлые головоломки; Самые трудные головоломки из старинных журналов.
  • Перельман Я. И. Занимательная математика.

Ссылки